묻고 답해요
158만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
에러 문의
이러한 에러가 발생하는데 왜 일어나는건가요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
에러 발생 질문
여러번 다시 했는데 아래와 같은 에러가 발생하네요kernel 을 다시하니까 되는데 왜 그런건가요? 무엇때문에 생기는지가 궁금합니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
fast RCNN vs faster RCNN
fast RCNN의 경우에는 selective search 기반이고faster RCNN의 기준에는 RPN(anchor box)를 사용하게 되는데 두개의 연산차가 이러한 속도와 정확도 차이에 큰 영향을 미치는건가요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
RPN 질문
안녕하세요 선생님. 질문이있습니다. 1. 결국에는 Anchorbox 중에서 가장 확률이 높은 anchorbox의 x, y 좌표를 loss 기반으로 학습시키는걸로 이해를 했는데 맞나요?2. 그러면 그렇게 수정된 anchorbox는 변한채로 남아서 다음학습 때 수정된 anchorbox 좌표가 또 학습되고 이런식인가요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Bounding Box Regression 학습 질문
FeatureMap 단에서는 이 이미지에 대한 정보를 가지고 있지 않은데 어떻게 Bounding Box Regression 이 학습되는지 모르겠습니다. CNN 처럼 Loss 를 기반으로 Back Propagation 과 같이 자동으로 weight가 업데이트 되려면 기준이 있어야 하는데 여기서 FC layer를 거쳐서 레이블이 할당되지 않았음에도 불구하고 어떻게 해당 좌표들이 구해지고 업데이트 되는지 모르겠습니다.
-
미해결[AI 실무] AI Research Engineer를 위한 논문 구현 시작하기 with PyTorch
vgg19 입력 이미지의 width, height 에 관하여.
안녕하세요, 수업 정말 잘 들었습니다 🙂 하나 궁금한 건,vgg19 의 features 및 classifier 를 확인해보니, """(features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace=True)... (34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (35): ReLU(inplace=True) (36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True)"""이렇게 생겼더라구요. 입력 이미지의 원래 width, height 를 X 라고 했을 때,vgg19 에서 다섯 번의 maxpool2d 및 Conv 레이어를 거치며,최종적인 width, height, channel 은 X/(2^5), X/(2^5), 512 이 될 것 같고,이게 Fully Connected Layer 의 입력 unit 25088 개와 같은 숫자가 되려면,X = 224 가 맞는 것 같은데, 강의 코드에서 512 로 설정하신 이유가 특별히 있으실까요?
-
해결됨[AI 실무] AI Research Engineer를 위한 논문 구현 시작하기 with PyTorch
loss.py 와 train.py 역할 명료화
안녕하세요, 수업 정말 잘 들었습니다 🙂 하나 궁금한 건, loss.py 에서 ContentLoss, StyleLoss 를 정의하고, 이후 해당 클래스들을 train.py 에서 불러온 다음 total_loss 를 계산하였는데. 혹시 loss.py 에서 total_loss 의 클래스도 구현하는게 정석적인 건지 아니면 이처럼 train 과정에서 새로운 loss term 을 하이퍼파라미터와 함께 초기화하여 사용하는게 더 일반적인 건지 궁금합니다.
-
해결됨[AI 기초] AI Research Engineer를 위한 CNN 이해하기
논문구현 강의수강 관련
안녕하세요, 선생님의 논문구현 강의 수강 전에 문의드릴 것이 있어 부득이하게 여기에 질문 드립니다.가용할 gpu가 마땅치 않아 코랩을 이용해야 할 것 같은데 해당 강의를 수강하는데 문제가 될까요?감사드립니다
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
MMDetection에서 densehead와 roihead의 차이
안녕하세요. 강의 정말 잘 듣고있습니다!다름이 아니라 MMDetection을 다시 공부하던 중 모델 아키텍쳐 부분에서 densehead와 roihead의 차이가 궁금해져서 이렇게 글을 남깁니다.설명에는 densehead와 roihead 모두 object의 위치와 classification을 수행한다고 나와있어서요.. 감사합니다!
-
미해결최신 논문과 유튜브 동영상으로 만드는 2D Pose estimation 실전 프로젝트 따라하기
우분투 설치 후 윈도우 삭제
모델 학습이나 논문 리뷰 등에 질문이 있으시다면 언제든지 남겨주세요!강의 피드백도 환영입니다! 처음으로 AI 입문하여 포즈추정에 관심이 생겨 강의를 수강하게 되었습니다.개발환경을 같이 설정하고 싶은 마음에 영상 보고 우분투를 설치했는데 보통 처음 설치할 때 [디스크 제거 후 우분투 설치]해야 오류가 안 난다고 하셔서 선택하고 설치했습니다. usb 기존 데이터 삭제로 알고 별 생각없이 눌렀는데 사실 기존 윈도우가 삭제라는 걸 뒤늦게 알았는데 복구 방법이 있을까요?제대로 알지 않고 무작정 따라해서 윈도우 데이터 다 날린 제가 답답하네요* 질문에 대한 답변은 일주일 정도 걸릴 수 있습니다.
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
GoogleNet Inception 모듈
안녕하세요 선생님강의 잘 보고 있습니다구글넷의 인셉션 모듈 설명 중에 MAX pooling이 포함되어 있는데요보통 max pooling은 인풋의 사이즈를 줄이는 것으로 알고 있는데 그러면 다른 컨볼루션이 통과된 아웃풋과 사이즈가 달라져서 concat이 안되는 거 아닌가요?아니면 여기에 포함된 컨볼루션들은 max pooling과 같은 stride를 같는 걸까요?
-
미해결[라즈베리파이] IoT 딥러닝 Computer Vision 실전 프로젝트
강의 자료 다운관련 문의 드립니다.
파이썬 텐서플로우 설치하기 영상을 보고 있는데 RBP_DL01_Raspberry pi install ? Edited (영상에 나와있는 해당문서) 해당 문서는 어디에 있나요? 강의자료 다운받은 곳에는 없는거 같습니다. 제가 받은 자료는 아래와 같습니다. 이거말고 다른곳에서 더 추가로 받아야 하나요?
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Batch Normalization 효과
안녕하세요 선생님강의 정말 잘 보고 있고요제 많은 질문들에도 너무 성심성의껏 답변 달아주셔서 감사합니다 ㅎㅎBatchNorm이 설계된 의도는 internal covariate shift를 해결하기 위해 제안되었다는 것은 이해했습니다.하지만 실제로는 그렇지 않고 optimization surface를 매끄럽게 해서 학습이 잘된다라고 설명하신 것까지 들었습니다.제가 이해한 바로는 활성화 함수에 들어가는 입력의 분포를 조정해서 학습이 잘되는 위치? 분포를 학습하는 것으로 이해했는데요(sigmoid로 예시를 든다면 더 이상 업데이트가 되지 않아도 될 정도라면 기울기가 saturate되는 부분으로 혹은 업데이트가 많이 되어야 한다면 0부근으로 이동시키는 등의) 정확히 어떤 원인에 의해 surface가 매끄러워지는 효과를 가지게 되는 것인지 궁금합니다..!
-
미해결최신 딥러닝 기술과 객체인식
강의자료
안녕하세요 수업 자료를 다운 받았는데, 혹시 강의 슬라이드가 없어서요 확인 가능하실까요?
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Layer Norm이 언어모델에 적합한 이유
안녕하세요 선생님강의 정말 잘 보고 있습니다.Layer Normalization을 보는 중에 입력 데이터를 Normalization하는 것을 통해 scale이나 shift에 robust하게 되는 것까진 이해했습니다.이런 효과가 왜 이미지보다 언어 모델에 더욱 효과적인지 이유를 알 수 있을까요?
-
미해결[OpenCV] 파이썬 딥러닝 영상처리 프로젝트 2 - 불량사과를 찾아라!
실습파일 제공
실습파일을 안내해주신 사이트에서 확인할 수가 없습니다.확인부탁드립니다.
-
미해결[OpenCV] 파이썬 딥러닝 영상처리 프로젝트 - 손흥민을 찾아라!
creapple 사이트에 실습파일이 없습니다.
실습 파일 예제를 받고 싶은데 안내해주신 사이트에는 없습니다.확인부탁드립니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
ROI Pooling Layer이 SPP Layer보다 성능이 뛰어난 이유가 궁금합니다.
SPP Layer의 경우 여러 Spatial Bins를 사용하여 이미지의 작은 부분부터 큰 부분까지의 정보를 취합하는 것으로 이해했습니다. 또한 ROI Pooling Layer의 경우 SPP Layer에서 Level이 1인 Bins만 적용하는 것으로 이해했습니다. 여기서 의문이 드는 것이 여러 정보를 종합적으로 취합한 SPP Layer가 ROI Pooling Layer보다 성능이 뛰어날 것으로 (직관적으로) 생각이 드는데, Fast RCNN에서 ROI Pooling을 선택한 이유가 궁금합니다. 실험적인 결과로 ROI Pooling을 선택했겠지만, ROI Pooling이 SPP Layer보다 Object Detection에서 우수한 성능을 보이는 이유가 궁금합니다!
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
YOLOv3에서 전체 예측 결과 갯수 10,647 구할 때 3을 곱해 주는 이유가 궁금합니다.
각 freture map 의 이미지 조각 갯수를 더하고 여기에 마지막에 3을 곱해주는데 여기에 대해서 좀 더 설명 부탁 드립니다.
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
9-2 fully connected NN
여기서 네트워크를 구성할 때 맨 마지막에 sigmoid를 태운 후에 마지막에 또 Softmax를 태우는데, 이렇게 할 거면 애초부터 네트워크의 마지막단을 sigmoid가 아닌 softmax를 태우면 되는 거 아닌가요?왜 sigmoid를 거친 후에 softmax를 태워야 하는 것인지 알 수 있을까요?