묻고 답해요
139만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Confidence score가 높을수록 많은 Box가 제거된다?
"NMS의 이해" 편 5:40에서 "Confidence score가 높을수록, IoU Threshold가 낮을수록 많은 Box가 제거된다"라고 말씀하셨는데,Confidence score가 아닌, Confidence threshold가 아닌지 질문 드립니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
로컬 GPU 사용법
안녕하세요 mmdetection을 설치하려고 하는데로컬에 있는 GPU를 사용해서 학습을 해보려고 합니다.코랩에서 제공하는 GPU 말고 로컬의 GPU를 사용할 수 있는 방법이 있을까요?
-
해결됨파이썬으로 시작하는 머신러닝+딥러닝(sklearn을 이용한 머신러닝부터 TensorFlow, Keras를 이용한 딥러닝 개발까지)
보스턴 집값 강의에서 csv 파일이 없습니다.
안녕하세요 훌룡한 강의 잘 수강하고 있습니다.보스턴 집값 예측 강의에서 csv 파일이 없습니다. 말씀 주신 링크에서도 찾을 수가 없습니다ㅠㅠjm90.hong@gmail.com 제 메일이긴 하는데 csv 파일 보내 주셔도 됩니다 감사합니다^^
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
섹션5 <공지>
섹션5 <공지> 코드 https://github.com/chulminkw/DLCV <여기에 있나요?? 찾아도 없어서요.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
YOLO_V3에서 output layer 질문입니다.
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 안녕하세요. 로드맵 따라가며 강의 정말 잘 듣고있습니다 !항상 친절한 답변도 감사드립니다.다름이 아니라 Yolo 3를 구현하면서 궁금증이 생겼습니다.1. output을 담당하는 layer가 3개이므로(13X13/26X26/52X52) 3개의 layer에서 forward를 이용하여 결과를 추출한다고 이해했는데 이게 맞나요?3개에서 뽑은 output(confidence_threshold보다 큰) 을 종합한 후 NMS process를 거쳐서 최종적으로 조건에 맞는 index를 반환받아 그 index를 이용해 image에 구현한다고 이해했는데 이것도 맞을까요? 만약 위에서 제가 이해한게 어느정도 맞다면 마지막으로 드는 궁금증은 13X13, 26X26, 52X52에서 각 Grid Cell이 image의 object를 예측할텐데,이는 비유하자면 Random Forest에서 각각 학습한 model이 다수결(?)로 infernece한다고 이해해도 될까요? 즉, 세개의 Multi Scale에서 학습한 각각의 gride cell의 anchor box들이 자신의 의견을 내놓아 그중 confidence, nms의 조건을 이용해 최종적으로 조건에 부합하는 몇 개의 bbox만 남는걸로 이해해도 되는지 여쭤보고 싶습니다..!
-
미해결파이썬을 활용한 머신러닝 딥러닝 입문
섹션9 First Autoencoder 인코더, 디코더 모델 생성 오류 해결 방법
강의 14분쯤에서 모델을 변경하는 부분입니다.케라스가 업데이트 된 건지는 잘 모르겠지만 아래 부분에서 시퀀셜 모델이 레이어를 단일 값으로 받을 수 없어 에러가 납니다.encoder = Sequential(Dense(2, input_shape=(3, ))) decoder = Sequential(Dense(3, input_shape=(2, ))) autoencoder = Sequential([encoder, decoder]) autoencoder.summary()아래 처럼 괄호로 감싸 리스트로 넘기면 해결됩니다.encoder = Sequential([Dense(2, input_shape=(3, ))]) decoder = Sequential([Dense(3, input_shape=(2, ))]) autoencoder = Sequential([encoder, decoder]) autoencoder.summary()
-
미해결파이썬을 활용한 머신러닝 딥러닝 입문
섹션7 텐서플로 허브 Trained_MobileNet 모델 생성 오류 해결 방법
"Only instances of keras.Layer can be " 97 f"added to a Sequential model. Received: {layer} " ValueError: Only instances of keras.Layer can be added to a Sequential model. Received: <tensorflow_hub.keras_layer.KerasLayer object at 0x791605217610> (of type <class 'tensorflow_hub.keras_layer.KerasLayer'>)위와 같은 오류가 나서 한참 찾았는데요. 원인은 tensorflow_hub와 tensorflow 간의 keras 필요 버전 차이에 있다고 합니다. 아래와 같이 keras를 별도 설치하여 임포트하여 사용하시면 정상 작동됩니다. 같은 에러로 고민이신 분에게 도움이 됐으면 좋겠네요. 수정 소스 코드!pip install tf_kerasimport tf_keras as tfk Trained_MobileNet_url = "https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/2" Trained_MobileNet = tfk.Sequential([ hub.KerasLayer(Trained_MobileNet_url, input_shape=(224, 224, 3)) ]) Trained_MobileNet.input, Trained_MobileNet.output
-
해결됨파이썬으로 시작하는 머신러닝+딥러닝(sklearn을 이용한 머신러닝부터 TensorFlow, Keras를 이용한 딥러닝 개발까지)
보스턴 집값 예측 15번 강의에 쓰이는 csv
보스턴 집값 예측 15번 강의에 쓰이는 csv는 어디서에서 다운받는지요?
-
해결됨딥러닝 CNN 완벽 가이드 - Fundamental 편
albumentations ShiftScaleRotate
ShiftScaleRotate에서 Only Scale 변환 후 원본 이미지와 사이즈가 같은 이유가 무엇인지 궁금합니다.ShiftScaleRotate 내부에서 원본 크기로 resize해주는 것인지 내부에서 Super Resolution을 적용해주는 것인지 궁금합니다. 화질이 손상되지 않은거 같아서 여쭈어봅니다.
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
Model Input Size 관련
먼저, 비전공자도 이해할 수 있도록 섬세하게 강의해주셔서 감사합니다.강의에서 efficientnet, xception 등 좋은 딥러닝 모델들을 소개해주셨는데요 실제 어떤 모델이 좋을지 테스트하다 보니 Input size 관련해서 아래와 같은 궁금증이 생깁니다.모델마다 권장 사이즈가 다 다르던데 여러 모델을 테스트 할 때 모델별 권장 Input size로 resize 하는게 좋을까요? 아니면 특정 사이즈로 고정해서 테스트 하는 것이 좋을까요? 이미지를 축소하는 경우보다 확대해서 모델에 넣는 경우 성능이 더 안 좋을까요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Feature 표현에 대한 질문입니다.
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.안녕하세요 교수님. 강의 잘 듣고있습니다.SPPNet의 이해 02 2:30 경에서 SPM으로 균일한 크기의 vector를 표현한다고 했는데 여기서 feature 표현이 3개가 있을 경우 ... 하는게 어떤 말인지 이해가 안 갑니다.예를들어 Max Pooling을 진행한다고 하면 사분면이 나뉘어지지 않았을 때는 1개를 뽑고 4개로 나누어지면 4개, 16개면 16개를 뽑을텐데 여기서 3을 곱하는게 어떨때 곱하는지 이해가 잘 안갑니다. 감사합니다.
-
미해결파이썬을 활용한 머신러닝 딥러닝 입문
Crash 파일 위치
쥬피터 노트북에서 crash 강의를 수강하려는데 다운 받은 파일집에는 영상과 다른 00.Table of contaent파일로 존재하는데 어떻게 수강해야하나요?
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mm_faster_rcnn_train_coco_bccd 학습시 수행이 안됩니다
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[20], line 4 2 mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) 3 # epochs는 config의 runner 파라미터로 지정됨. 기본 12회 ----> 4 train_detector(model, datasets, cfg, distributed=False, validate=True) File /opt/conda/lib/python3.10/site-packages/mmdet-2.28.2-py3.10.egg/mmdet/apis/train.py:163, in train_detector(model, dataset, cfg, distributed, validate, timestamp, meta) 156 model = build_ddp( 157 model, 158 cfg.device, 159 device_ids=[int(os.environ['LOCAL_RANK'])], 160 broadcast_buffers=False, 161 find_unused_parameters=find_unused_parameters) 162 else: --> 163 model = build_dp(model, cfg.device, device_ids=cfg.gpu_ids) 165 # build optimizer 166 auto_scale_lr(cfg, distributed, logger) File /opt/conda/lib/python3.10/site-packages/mmcv/utils/config.py:524, in Config.__getattr__(self, name) 523 def __getattr__(self, name): --> 524 return getattr(self._cfg_dict, name) File /opt/conda/lib/python3.10/site-packages/mmcv/utils/config.py:52, in ConfigDict.__getattr__(self, name) 50 else: 51 return value ---> 52 raise ex AttributeError: 'ConfigDict' object has no attribute 'device'^캐글--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-25-adb1a52111f0> in <cell line: 4>() 2 mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) 3 # epochs는 config의 runner 파라미터로 지정됨. 기본 12회 ----> 4 train_detector(model, datasets, cfg, distributed=False, validate=True) 2 frames /usr/local/lib/python3.10/dist-packages/mmcv/utils/config.py in __getattr__(self, name) 50 else: 51 return value ---> 52 raise ex 53 54 AttributeError: 'ConfigDict' object has no attribute 'device'^코랩 안녕하세요 좋은 강의 감사드립니다. import os.path as ospmmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))# epochs는 config의 runner 파라미터로 지정됨. 기본 12회train_detector(model, datasets, cfg, distributed=False, validate=True) 이 셀이 실행시 이러한 오류가 뜨는데 이유를 모르겠습니다
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
안녕하세요 라벨 관련 질문드려요
안녕하세요,제가 직접 가지고 있는 jpg 사진으로 labelme 5.21 버전으로 label하여 json 문서로 출력하려 fast-rcnn이나 mask-rcnn,yolo 으로 segmentation하려고 합니다. 혹시 수업 강의 자료로 할수있는지 궁금해서 질문올립니다~
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
ROI Pooling 질문 드립니다.
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.R-CNN에서는 기존의 이미지를 CNN모델에 넣기 위해서 변형을 하다보니깐(warp), 원본의 정보가 훼손될 수 있다고도 하셨는데,Fast R-CNN에서 Feature Map에서 SS를 매칭시킨 결과를 ROI Pooling에 넣기 위해서 변형하는 것은 F.M의 정보를 훼손 시키지 않는 건가요?아니면, 훼손되더라도 그 결과가 좋기 때문에 그냥 그렇게 ROI Pooling 사이즈에 일괄적으로 맞추는건가요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
선생님 강의 너무 잘 듣고 있습니다. 질문이 있습니다.
SPP를 통해서 padding 된 이미지를 가지고 Annotation 파일의 정보와 비교해서 유사도를 측정할텐데 Annotation안에 있는 모든 구역의 정보와 비교하는 것인가요? 예) TV, 사람, 의자 사이즈가 홀수인 경우에는 다른 질문에 응답처럼 padding 한다고 되어있는데 다른 모든 경우에도 정보가 부족하다면 해당 공간을 0으로 채우는 건가요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mmsegmentation 응용
안녕하세요.mmdetection 뿐만 아니라 , mmsegmentation 에서도 적용을 해보고자 합니다. 이때 mmdetection에서 사용하는from mmdet.datasets import build_dataset의 경우mmsegmentation에서는 어떻게 import하는지 궁금합니다.
-
해결됨머신러닝, 딥러닝 기초 with Python, Keras
공지
강좌 운영이나 강의 내용에 관해 궁금한 점이 있으면 자유롭게 나누어주세요.교수자, 수강생 누구나 글쓰기와 댓글 쓰기가 가능합니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
선생님 질문입니다!
SS proposal 영역과 GT가 많이 겹칠 수록 그 이미지가 잘 탐지되었다는 것은 알겠습니다. 다만 하나의 예시로 SS proposal은 'TV'를 예측하고 GT의 경우에는 '사람'을 예측했다면 그것은 잘못된거라 생각하는데 GT에는 label 명이 명시가 되어있지만 SS proposal의 경우에는 그런 부분이 어떻게 설정되는가요? - 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
yolov5(yolov8) val.py 결과 저장 질문
안녕하세요. 강사님. yolov5(yolov8) val.py 결과 저장 질문드립니다.아래와 같이 val.py 를 수행한 결과를 엑셀에 저장하려면 어떻게 해야 하나요? results = model.val()로 val을 수행하고, print(results.class_result(class_index))로 클래스의 precision, recall, map50, map50-95값을 확인할 수 있었습니다.하지만 Images, Instances 값은 어디서 가져와야 하는지를 모르겠습니다...그리고, conf_matrix = results.confusion_matrix.matrix로 cm을 가져왔는데, yolo val 에서 제공하는 box precision, box recall 값과cm 을 통해 계산한 precision, recall 값에 차이가 있는데, 왜 그런지 모르겠습니다.yolo 문서 상으로는 box precision, recall은 IoU 만 중요시하고, class의 정답 유무는 중요시하지 않다고 하는데,보고서나 발표자료에는 yolo의 box precision, reall을 평가지표로 삼아야 하는지, 계산한 precision recall 값을 지표로 삼아야하는지 모르겠습니다.답변 부탁드립니다. 감사합니다.