Thumbnail
BEST 데이터 사이언스 인공지능
머신러닝 엔지니어 실무
(4.8)
48개의 수강평 ∙ 244명의 수강생
88,000원

월 17,600원

5개월 할부 시
지식공유자 : Chris Song
총 16개 수업˙총 10시간 15분
평생 무제한 수강
수료증 발급 강의
입문 초급 중급이상 대상
내 목록 추가 459 공유
중급자를 위해 준비한
[인공지능, 데이터 사이언스] 강의입니다.

이 강의를 통해 머신러닝 프로젝트에서 겪게될 수 많은 시행착오를 줄일 수 있게 됩니다. 뤼이드의 머신러닝 파이프라인을 총책임지고 있는 제가 기본부터 잘 가르쳐드립니다.

✍️
이런 걸
배워요!
머신러닝 실험관리
하이퍼파라미터 최적화
머신러닝 실험 리포트 생성 자동화
데이터 검증 TFDV
모델 분석 Model Analysis
리서치 코드 품질 관리
Kubeflow 실습
모델 저장소 mlflow 실습
모델 서빙 bentoML 실습

머신러닝 엔지니어 실무의 95%는, ____이다!

인공지능의 4대천왕 중의 한 명인 'Andrew Ng'은 최근 온라인 컨퍼런스에서 MLOps의 중요성에 대해 설명하였습니다. 이제는 모델 중심적 사고에서 벗어나서, MLOps와 Data에 집중해야 한다는 게 그의 주장입니다. 그리고 이 일을 해내는 엔지니어가 바로 머신러닝 엔지니어입니다.

그런데 모델 코드를 짜는 것이 전체 머신러닝 프로젝트 실무의 5%에 불과하다는 점 알고 계신가요?
실제론 데이터 파이프라인 구축, 데이터 전처리, 모델 서빙 등의 업무가 95%를 차지하죠.

실무의, 실무에 의한, 실무를 위한 머신러닝 강의

머신러닝 엔지니어의 실무는 이렇습니다!

머신러닝 엔지니어는 머신러닝 파이프라인을 구축하여, 머신러닝 프로젝트의 업무를 자동화하며 연구조직의 생산성을 극적으로 끌어올리는 일을 하는 사람입니다.

머신러닝 강의는 시중에 많습니다. 하지만 실무 기반의 AI Production 관련 강의는 많지 않죠. 
그래서 강의를 들은 후 프로젝트에서 주어진 문제를 해결할 수 있는 엔지니어로 거듭날 수 있도록,
실무에 꼭 필요한 내용만 골라 강의를 제작하게 되었습니다.

이 강의를 통해 실무에 필요한 머신러닝 엔지니어링 기술을 습득하여,
프로젝트를 성공적으로 완료하실 수 있었으면 좋겠습니다.

이 강의를 들으면 이렇게 될 수 있어요! 📖

  • 머신러닝 실험 보고서를 자동으로 생성할 수 있어요.
    실제 지식공유자의 프로젝트 대시보드 보러 가기 (링크 클릭!)

    실제 머신러닝 실험 보고서 예시
  • AutoML - 하이퍼 파라미터 튜닝을 통해 최적의 파라미터를 찾아낼 수 있어요.
  • Kubeflow 로 머신러닝 파이프라인을 구축할 수 있어요.

    실제 머신러닝 파이프라인 제작 예시
  • mlflow를 통해 모델을 관리할 수 있어요.
  • bentoml로 모델 서빙을 하는 법을 익힐 수 있어요.


이런 분들이 들으면 좋아요! 🔑

  • 머신러닝 커리어로 변경하고자 하는 소프트웨어 엔지니어
  • 머신러닝 실험 관리를 잘하고 보고서를 예쁘게 만들고 싶은 AI 연구원
  • 머신러닝 프로젝트 실무를 해야하는데 관련 지식을 몰라서 막막한 개발자


저를 소개합니다 ✒️

경력

현) Riiid VP of AIOps
현) Google Developer Expert for ML
전) 네이버 AI Research Engineer
전) 카카오 Data Engineer

포트폴리오/개인 영상


 자주 묻는 Q&A 💬

Q. 머신러닝 파이프라인이 커리어에 도움이 될까요?
A. 확실히 말할 수 있습니다. 현재 인공지능 업계에서 가장 중요합니다. 저는 수 많은 회사들에게 컨설팅을 진행했습니다. 그리고 대부분 회사들은 바로 이 머신러닝 파이프라인에 대한 갈증이 있다는 것을 확인했습니다. 인공지능 회사들의 기술 소개 페이지를 가면 항상 빠지지 않는 게 바로 MLOps 관련 기술입니다. 어떻게 데이터를 효율적으로 수집하고, 학습시키는 지 소개합니다. 

Q. 개발을 잘 몰라도 들을 수 있나요?
A. 권장사항은 약간의 개발지식이 있으신 분들을 대상으로 한 강의이지만, 기본적으로 생각없이 따라하는 정도로 쉽게 구성하였습니다. 

Q. 어느 수준까지 다루나요?
A. 머신러닝 파이프라인의 기본 개념과 실무에서 필요한 코드 품질 관리, 실험관리, 모델관리, 서빙 API 구축 등을 다루게 됩니다.

지식공유자가 알려주는
강의 수강 꿀팁!
🎓
이런 분들께
추천드려요!
머신러닝을 실무에 적용하고 싶은 사람
머신러닝 프로젝트의 기술 부채를 줄이고 싶은 사람
📚
선수 지식,
필요한가요?
파이썬
머신러닝/딥러닝 기초

안녕하세요
Chris Song 입니다.
Chris Song의 썸네일

(현) 뤼이드 VP of AIOps

(현) Google Developer Expert for Machine Learning

(전) Naver - AI Research Engineer

(전) Kakao - Data Engineer

커리큘럼 총 16 개 ˙ 10시간 15분의 수업
이 강의는 영상, 수업 노트가 제공됩니다. 미리보기를 통해 콘텐츠를 확인해보세요.
섹션 0. 머신러닝 파이프라인 소개
머신러닝 파이프라인의 이해 미리보기 50:42
머신러닝 파이프라인 단계 38:37
섹션 1. 머신러닝 프로젝트 실험관리
섹션 2. 코드 품질, 데이터 검증, 모델 분석
리서치 코드 품질 관리 59:26
데이터 검증 - Tensorflow Data Validation 37:10
머신러닝 모델 분석 What if tool 31:24
섹션 3. 도커 & 쿠버네티스 기초
도커 소개 30:18
쿠버네티스 기초 30:55
섹션 4. 쿠베플로우 머신러닝 파이프라인
쿠베플로우 소개 23:39
쿠베플로우 파이프라인 Part 1 미리보기 27:50
쿠베플로우 파이프라인 Part 2-1 19:38
쿠베플로우 파이프라인 Part 2-2 38:54
쿠베플로우 파이프라인 Part 3 32:44
섹션 5. 모델 관리 및 서빙
모델 저장소(Model Registry) - mlflow 63:00
모델 서빙(Model Serving) - bentoML 54:00
강의 게시일 : 2021년 05월 10일 (마지막 업데이트일 : 2021년 05월 11일)
수강평 총 48개
수강생분들이 직접 작성하신 수강평입니다. 수강평을 작성 시 300잎이 적립됩니다.
4.8
48개의 수강평
5점
4점
3점
2점
1점
VIEW 좋아요 순 최신 순 높은 평점 순 낮은 평점 순 평점 순 높은 평점 순 낮은 평점 순
HAENARA SHIN thumbnail
좋은점 1. 꽤 깊고 현실적인 주제에 대해서 빠른 시간 내로 실무적인 접근법을 배울 수 있다. 2. wandb, wit 등의 유용한 툴과 docker, kubernetes, kubeflow, mlflow, bentoML 등의 implementation 과정을 볼 수 있다. 3. 실전/실무적인 접근 혹은 노하우 등을 얻을 수 있다. 안좋은점 1. '인프런 강의'만을 위한 강의가 아니라, 다른 talk? 혹은 강의? 에서 진행했던 것을 레코딩해서 그대로 올린것 같음 => 산만한 부분이 많고, 강의 녹화 품질도 같은 가격대비 다른 강의에 비해서 조금 아쉬움. 인프런에서 꽤 많은 강의를 구매하고 청취했고, 그 외 다른 플랫폼에서도 강의를 시청했는데 단순 강의 품질만 따지자면 좋은 평가를 받기는 어려울것 같음. 2. 1에 이어서, 정제되지 않은 설명/개인 의견/강의자료가 아쉬움. '인프런'만을 위해서 촬영하지 않았기 때문에 발생할 수 있는 일 같음. (인프런에서 강의 컨텐츠 사전 감수는 전혀 하지 않는가 봅니다.) 3. 수강평을 남겨야 강의 자료를 받을 수 있기 때문에 동영상을 보면서 동시에 따라 하기에는 무리가 있음. 물론, 완강하기 전에 수강평을 먼저 쓰면 모르겠지만, 개인적으로 쓸모없는 리뷰를 남기고 싶지 않아서 완강 후에 리뷰를 남기고 반복 청취 할 때 강의 자료와 함께 볼 예정임. 총평 강의 대상이 '중급 이상' 이라고 공지 한것 처럼, 어느정도 경험이 있거나 들어본 경험이라도 없으면 추천 하지 않음. 하지만 경험이 있는 상태에서 빠르게 훑고, 또 실무자 관점의 접근 등을 볼 수 있는 좋은 기회임. 그리고, 머신러닝/딥러닝 모델 연구 열심히 하고 MLOps 능력도 탑재하고 싶은 사람이라면 한 번쯤 들어도 나쁘진 않음. 본 강의를 듣고 최근 코세라에 오픈한 MLOps 강의도 완강 한다면 괜찮은 조합이 될것 같네요.
2021-05-15
그만물어봐 thumbnail
ML 현장에서 실제로 가장 기간과 비용이 많이 들어가는 것이 모델 개발이 아니라 데이터 준비(전처리, 변환 등)와 학습된 ML 모델을 배포하고 운영을 위해 지속적으로 모델을 유지 관리하는 일입니다. 이를 지원하는 툴이 MLOps인데 MLOps에 대한 자료가 많지 않은 상황에서 실무에 매우 도움이 되는 강좌입니다.
2021-07-03
yongyi.lee thumbnail
ML Project를 진행하면서 수집, 정제, 가공, 검증을 포함한 데이터 구축 및 모델 학습 파이프라인 자동화에 필요성을 많이 느껴 MLOps 관련 자료를 찾던 중 한글로 된 강의 자료를 찾게 되어 수강하게 되었습니다. 우선 한글로 된 강의라 편하게 들을 수 있는 점이 좋았고, 강사님의 실무 경험을 바탕으로 MLOps의 필요성을 소개해 주셔서 내용이 잘 와닿습니다. 또한 파이프라인 구축을 위해 현업에서 사용하시는 다양한 SaaS 도구들을 소개 및 직접 실습해 주시는 부분들도 매우 유용하게 들었습니다. 저는 researcher 포지션이라 CS나 DevOps나 관련 배경 지식이 부족해 관련 내용들을 키워드를 바탕으로 자료를 찾아가며 공부하고 있습니다. ML 관점에서도 간단한 프로젝트라도 ML 개발 경험이 있으신 분들에게 더 도움이 되는 강의라고 생각합니다. ML 프로젝트를 진행하고 계신 분들에게 많은 도움이 되는 강의라고 생각합니다.
2021-06-15
김현우@ thumbnail
다른 곳에서는 들을 수 없는 엔지니어링 과정을 들을 수 있습니다. 너무 좋은 강의 감사합니다.
2021-05-25
김창엽 thumbnail
MLOps에 대한 한글자료가 많지 않은 데, 다른 분들이 편하게 접할 수 있도록 좋은 강의 해주셔서 감사 드립니다. 다만 편집 부분만 더 신경써주셨으면, 훨씬 더 좋았을 것 같아요 (다른 곳 강의 녹화해서 그대로 올린느낌을 지울 수가 없네요...) 전반적으로 한번 훑어 보기에 좋은 강의 같습니다.
2021-06-07
88,000원

월 17,600원

5개월 할부 시
내 목록 추가 459 공유
지식공유자 : Chris Song
총 16개 수업˙총 10시간 15분
평생 무제한 수강
수료증 발급 강의
입문 초급 중급이상 대상
지식공유자 되기
많은 사람들에게 배움의 기회를 주고,
경제적 보상을 받아보세요.
지식공유참여
기업 교육을 위한 인프런
“인프런 비즈니스” 를 통해 모든 팀원이 인프런의 강의를
자유롭게 학습하는 환경을 제공하세요.
인프런 비즈니스