강의

멘토링

로드맵

BEST
AI 개발

/

딥러닝 · 머신러닝

머신러닝 엔지니어 실무

이 강의를 통해 머신러닝 프로젝트에서 겪게될 수 많은 시행착오를 줄일 수 있게 됩니다. 뤼이드의 머신러닝 파이프라인을 총책임지고 있는 제가 기본부터 잘 가르쳐드립니다.

(4.5) 수강평 83개

수강생 887명

  • Chris Song

먼저 경험한 수강생들의 후기

이런 걸 배울 수 있어요

  • 머신러닝 실험관리

  • 하이퍼파라미터 최적화

  • 머신러닝 실험 리포트 생성 자동화

  • 데이터 검증 TFDV

  • 모델 분석 Model Analysis

  • 리서치 코드 품질 관리

  • Kubeflow 실습

  • 모델 저장소 mlflow 실습

  • 모델 서빙 bentoML 실습

머신러닝 엔지니어 실무의 95%는, ____이다!

인공지능의 4대천왕 중의 한 명인 'Andrew Ng'은 최근 온라인 컨퍼런스에서 MLOps의 중요성에 대해 설명하였습니다. 이제는 모델 중심적 사고에서 벗어나서, MLOps와 Data에 집중해야 한다는 게 그의 주장입니다. 그리고 이 일을 해내는 엔지니어가 바로 머신러닝 엔지니어입니다.

그런데 모델 코드를 짜는 것이 전체 머신러닝 프로젝트 실무의 5%에 불과하다는 점 알고 계신가요?
실제론 데이터 파이프라인 구축, 데이터 전처리, 모델 서빙 등의 업무가 95%를 차지하죠.

실무의, 실무에 의한, 실무를 위한 머신러닝 강의

머신러닝 엔지니어의 실무는 이렇습니다!

머신러닝 엔지니어는 머신러닝 파이프라인을 구축하여, 머신러닝 프로젝트의 업무를 자동화하며 연구조직의 생산성을 극적으로 끌어올리는 일을 하는 사람입니다.

머신러닝 강의는 시중에 많습니다. 하지만 실무 기반의 AI Production 관련 강의는 많지 않죠. 
그래서 강의를 들은 후 프로젝트에서 주어진 문제를 해결할 수 있는 엔지니어로 거듭날 수 있도록,
실무에 꼭 필요한 내용만 골라 강의를 제작하게 되었습니다.

이 강의를 통해 실무에 필요한 머신러닝 엔지니어링 기술을 습득하여,
프로젝트를 성공적으로 완료하실 수 있었으면 좋겠습니다.

이 강의를 들으면 이렇게 될 수 있어요! 📖

  • 머신러닝 실험 보고서를 자동으로 생성할 수 있어요.
    실제 지식공유자의 프로젝트 대시보드 보러 가기 (링크 클릭!)

    실제 머신러닝 실험 보고서 예시
  • AutoML - 하이퍼 파라미터 튜닝을 통해 최적의 파라미터를 찾아낼 수 있어요.
  • Kubeflow 로 머신러닝 파이프라인을 구축할 수 있어요.

    실제 머신러닝 파이프라인 제작 예시
  • mlflow를 통해 모델을 관리할 수 있어요.
  • bentoml로 모델 서빙을 하는 법을 익힐 수 있어요.


이런 분들이 들으면 좋아요! 🔑

  • 머신러닝 커리어로 변경하고자 하는 소프트웨어 엔지니어
  • 머신러닝 실험 관리를 잘하고 보고서를 예쁘게 만들고 싶은 AI 연구원
  • 머신러닝 프로젝트 실무를 해야하는데 관련 지식을 몰라서 막막한 개발자


저를 소개합니다 ✒️

경력

현) Riiid VP of AIOps
현) Google Developer Expert for ML
전) 네이버 AI Research Engineer
전) 카카오 Data Engineer

포트폴리오/개인 영상


 자주 묻는 Q&A 💬

Q. 머신러닝 파이프라인이 커리어에 도움이 될까요?
A. 확실히 말할 수 있습니다. 현재 인공지능 업계에서 가장 중요합니다. 저는 수 많은 회사들에게 컨설팅을 진행했습니다. 그리고 대부분 회사들은 바로 이 머신러닝 파이프라인에 대한 갈증이 있다는 것을 확인했습니다. 인공지능 회사들의 기술 소개 페이지를 가면 항상 빠지지 않는 게 바로 MLOps 관련 기술입니다. 어떻게 데이터를 효율적으로 수집하고, 학습시키는 지 소개합니다. 

Q. 개발을 잘 몰라도 들을 수 있나요?
A. 권장사항은 약간의 개발지식이 있으신 분들을 대상으로 한 강의이지만, 기본적으로 생각없이 따라하는 정도로 쉽게 구성하였습니다. 

Q. 어느 수준까지 다루나요?
A. 머신러닝 파이프라인의 기본 개념과 실무에서 필요한 코드 품질 관리, 실험관리, 모델관리, 서빙 API 구축 등을 다루게 됩니다.

이런 분들께
추천드려요

학습 대상은
누구일까요?

  • 머신러닝을 실무에 적용하고 싶은 사람

  • 머신러닝 프로젝트의 기술 부채를 줄이고 싶은 사람

선수 지식,
필요할까요?

  • 파이썬

  • 머신러닝/딥러닝 기초

안녕하세요
입니다.

1,044

수강생

90

수강평

8

답변

4.4

강의 평점

3

강의

(현) 뤼이드 VP of AIOps

(현) Google Developer Expert for Machine Learning

(전) Naver - AI Research Engineer

(전) Kakao - Data Engineer

커리큘럼

전체

16개 ∙ (10시간 15분)

강의 게시일: 
마지막 업데이트일: 

수강평

전체

83개

4.5

83개의 수강평

  • haenarashin님의 프로필 이미지
    haenarashin

    수강평 9

    평균 평점 4.4

    4

    100% 수강 후 작성

    Điểm tốt 1. Bạn có thể nhanh chóng học cách tiếp cận thực tế đối với một chủ đề khá sâu sắc và thực tế. 2. Bạn có thể thấy các công cụ hữu ích như Wanb và Wit cũng như quy trình triển khai docker, kubernetes, kubeflow, mlflow, bentoML, v.v. 3. Bạn có thể đạt được những phương pháp tiếp cận hoặc bí quyết thực tế/thực tế. Điểm xấu 1. Đây không phải là bài giảng chỉ dành cho 'Bài giảng Infron' mà là một bài nói chuyện khác? Hay giảng bài? Có vẻ như họ đã ghi lại những gì đang diễn ra và tải nó lên => Có rất nhiều điều gây xao lãng và chất lượng ghi âm bài giảng hơi thất vọng so với các bài giảng khác có cùng mức giá. Tôi đã mua và nghe khá nhiều bài giảng trên Infrun và xem các bài giảng trên các nền tảng khác, nhưng có vẻ khó để có được đánh giá tốt nếu chỉ dựa vào chất lượng bài giảng. 2. Tiếp tục từ phần 1, lời giải thích/ý kiến ​​cá nhân/tài liệu bài giảng thiếu tinh tế thật đáng thất vọng. Có vẻ như điều này có thể xảy ra vì nó không được quay chỉ dành cho 'Infron' (Tôi không nghĩ Infron thực hiện bất kỳ việc xem xét trước nội dung bài giảng nào.) 3. Vì bạn phải để lại bài đánh giá khóa học để nhận tài liệu khóa học nên rất khó để xem video và làm theo cùng một lúc. Tất nhiên, tôi không biết liệu mình có viết bài đánh giá khóa học trước khi hoàn thành khóa học hay không, nhưng cá nhân tôi không muốn để lại một bài đánh giá vô ích nên tôi sẽ để lại bài đánh giá sau khi hoàn thành khóa học và xem xét nó. với tài liệu bài giảng khi tôi nghe đi nghe lại nhiều lần. Đánh giá tổng thể Đối tượng mục tiêu của khóa học là 'trung cấp trở lên'; Như đã thông báo, nó không được khuyến khích trừ khi bạn có một số kinh nghiệm hoặc thậm chí nghe nói về nó. Tuy nhiên, đây là cơ hội tốt để nhanh chóng xem xét nó bằng kinh nghiệm và xem cách tiếp cận từ góc độ của người thực hành. Ngoài ra, nếu bạn là người chăm chỉ nghiên cứu mô hình machine learning/deep learning và muốn có khả năng MLOps, thì hãy nghe nó ít nhất một lần là một ý tưởng không tồi. Tôi nghĩ sẽ là một sự kết hợp tốt nếu bạn tham gia khóa học này và hoàn thành khóa học MLOps mới mở trên Coursera.

    • czangyeob님의 프로필 이미지
      czangyeob

      수강평 2

      평균 평점 4.5

      4

      100% 수강 후 작성

      Tài liệu tiếng Hàn về MLOps không có nhiều nên tôi xin cảm ơn bạn đã cung cấp một bài giảng hay để người khác dễ dàng tiếp cận. Tuy nhiên, tôi nghĩ sẽ tốt hơn nhiều nếu phần biên tập được chú ý nhiều hơn (tôi không thể lay chuyển được cảm giác rằng bài giảng đã được ghi lại ở một nơi khác và tải lên như cũ...) Nhìn chung, nó có vẻ là một tác phẩm hay. bài giảng để xem xét.

      • p14001238587님의 프로필 이미지
        p14001238587

        수강평 3

        평균 평점 4.7

        4

        100% 수강 후 작성

        Bài giảng hay nhưng quá trình setup môi trường là phiên bản cũ nên mất nhiều thời gian để giải quyết vấn đề. Tôi nghĩ khóa học cần cập nhật hoặc bảo trì. Tất nhiên, bản thân bài giảng thực sự rất hay. Cảm ơn

        • etfpro님의 프로필 이미지
          etfpro

          수강평 2

          평균 평점 3.0

          4

          81% 수강 후 작성

          Trong lĩnh vực ML, điều thực sự tốn nhiều thời gian và chi phí nhất không phải là phát triển mô hình mà là chuẩn bị dữ liệu (tiền xử lý, chuyển đổi, v.v.), triển khai mô hình ML đã học và liên tục duy trì mô hình để vận hành. Công cụ hỗ trợ điều này là MLOps và khóa học này rất hữu ích trong thực tế trong tình huống không có nhiều dữ liệu về MLOps.

          • ramanuzan님의 프로필 이미지
            ramanuzan

            수강평 1

            평균 평점 4.0

            4

            100% 수강 후 작성

            Thật tuyệt vời khi nghe bài giảng tôi được tiếp xúc với rất nhiều công cụ hữu ích cho việc sử dụng thực tế. Tuy nhiên, có một chút thất vọng khi đó không phải là bài giảng dành cho Infron mà được sao chép từ một hội thảo khác.

            2025 추석맞이 감사할인 중

            월 ₩281,272

            5개월 할부 시

            24%

            ₩88,000

            ₩1,406,359

            Chris Song님의 다른 강의

            지식공유자님의 다른 강의를 만나보세요!

            비슷한 강의

            같은 분야의 다른 강의를 만나보세요!