Thumbnail
데이터 사이언스 인공지능
유니티 머신러닝 에이전트 완전정복 (기초편)
(5.0)
6개의 수강평 ∙ 195명의 수강생

66,000원

지식공유자: 민규식
총 38개 수업 (7시간 18분)
수강기한: 무제한
수료증: 발급
난이도:  입문-초급-중급이상
지식공유자 답변이 제공되는 강의입니다
폴더에 추가 공유
초급자를 위해 준비한
[인공지능, 데이터 사이언스] 강의입니다.

이 강의를 통해 수강생은 다양한 강화학습의 이론을 학습하고 이를 직접 구현해 볼 뿐만 아니라 유니티 머신러닝 에이전트를 이용하여 구현한 강화학습 알고리즘을 테스트해볼 강화학습 환경까지 직접 제작해볼 수 있습니다.

✍️
이런 걸
배워요!
유니티 개발
유니티 머신러닝 에이전트
강화학습 환경 제작
강화학습 이론
강화학습 코드 구현

강화학습 환경 구현, 
유니티(Unity)로 쉽고 편리하게! 

강화학습 환경
어떻게 마련하면 좋을까요?

2016년 알파고가 큰 충격을 안겨준 이후, 알파고에 적용되었다고 알려진 강화학습(Reinforcement Learning)에 대한 관심이 크게 높아졌으며 그 열기는 아직까지도 뜨거운 것 같습니다. 이 강화학습을 구성하는 큰 요소는 아래와 같이 강화학습 알고리즘과 강화학습 환경입니다. 이 두 가지가 서로 행동, 상태, 보상 등의 정보를 주고받으면서 강화학습 알고리즘이 학습을 수행하게 됩니다. 

알파고 이후 강화학습 알고리즘은 정말 많은 발전을 이뤄왔습니다. 이에 맞춰 OpenAI GYM, Mujoco, Atari, GTA5, Malmo 등등 다양한 종류의 강화학습 환경들 또한 공개되어 왔습니다. 이 환경들은 대부분 게임을 기반으로 하는 환경입니다. 강화학습은 게임에 적용하기 좋은 알고리즘이 분명하지만 최근 강화학습을 게임 뿐만 아니라 추천, 로봇, 드론, 에너지, 금융 등등 다양한 분야에 적용해보려는 시도가 늘고 있습니다. 

하지만 이런 다양한 분야들에 대한 강화학습 환경은 여전히 부족한 상황입니다. 특히나 개발자가 원하는 구체적인 스펙을 정확하게 만족하는 환경이 공개되기란 기대하기 매우 어렵습니다. 여러분이 강화학습을 적용해보고 싶은 특정한 센서 구성과 관절 구조를 가지는 로봇 환경이 있다고 하더라도, 해당 분야의 공개된 강화학습 환경이 없으면 연구를 시작하는 것조차 불가능할 수 있습니다.

이미 만들어진 환경을 이용하면 
이런 단점이 있습니다. 

환경에 대한 
수정이 
어려움 

환경마다 
사용법이 
다름 

필요한 
환경이 
없을 수 있음 

하지만 2017년 9월, 세계 최대의 게임 엔진 회사 중 하나인 유니티에서 이런 고민을 해결해 줄 수 있는 유니티 머신러닝 에이전트(Unity Machine-Learning Agent)라는 툴을 공개했습니다.


Unity ML-Agents로 
구현하는 강화학습 환경!

유니티 머신러닝 에이전트를 이용하면?

본 강의에서는 이 유니티 머신러닝 에이전트를 이용하여 다양한 강화학습 환경을 직접 구현하는 방법을 배워볼 뿐 아니라 해당 환경에 적용할 강화학습 알고리즘의 이론, 코드 구현까지 진행할 예정입니다.

유니티 머신러닝 에이전트 완전 정복 - 기초편

유니티 머신러닝 에이전트 완전 정복 강의의 전체 내용은 기초편과 응용편으로 나누어 진행할 것이며 이번 강의는 이 중 기초편 내용입니다. 기초편에서 살펴볼 구체적인 내용은 다음과 같습니다. 

  • 강화학습 기초 용어 및 이론
  • 유니티 설치 및 기초 사용법
  • 유니티 머신러닝 에이전트 설치, 구성 요소 설명, 사용법 (mlagents-learn, Python API)
  • 환경 제작
    • GridWorld, Drone, KartRacing
  • 강화학습 알고리즘 이론 학습 및 코드 구현 
    • DQN, A2C, DDPG, Behavioral Cloning

이번 강의를 통해 제작할 환경과 학습할 알고리즘들의 코드는 깃허브에 모두 포함되어 있습니다. 
아래의 이미지들은 이번 강의를 통해 직접 구현해볼 강화학습 환경들과 이를 여러분이 구현할 강화학습 알고리즘을 통해 학습한 결과입니다.

그리드월드 환경 제작하기

드론 환경 제작하기

카트 레이싱 환경 제작하기


자주 묻는 질문을 
확인해보세요. 

Q. 유니티를 사용해본 적이 없는데 수강해도 괜찮을까요? 

유니티를 처음 사용해보시는 분들도 강의를 쉽게 따라갈 수 있도록 설치부터 시작해서 간단한 환경을 직접 만드는 과정까지 차근차근 내용을 진행합니다. 유니티의 내용만을 자세히 다루지는 않지만 강의를 수강하시고 나면 에셋스토어에 있는 에셋을 이용해 환경을 제작하거나 간단한 환경을 직접 만들어 강화학습 환경을 만드실 수 있을 것입니다.  

Q. 머신러닝 에이전트를 사용하기 위해서는 강화학습 내용을 반드시 잘 알고 있어야 하나요? 

머신러닝 에이전트는 기본적으로 강화학습을 지원하는 도구이므로 강화학습에 대한 기본적인 개념은 알고 계셔야 더 수월하게 머신러닝 에이전트를 사용할 수 있습니다. 하지만 유니티 머신러닝 에이전트에서 다양한 강화학습 알고리즘들을 제공하여 이를 이용해 강화학습 환경에서 에이전트에 대한 학습을 진행할수도 있기 때문에 해당 기능을 이용하는 경우 강화학습에 대한 심도있는 지식이 없더라도 수월하게 머신러닝 에이전트를 사용할 수 있습니다. 

Q. 강의를 수강하기 위해서 딥러닝에 대한 깊은 이해나 많은 구현 경험이 필요할까요? 

Pytorch로 MNIST 데이터를 분류하는 모델을 직접 구현해보신 정도라면 큰 어려움 없이 강의를 수강할 수 있을 것으로 생각합니다. 그리고 만약 Tensorflow 2.x 버전을 사용해보신 분들이라도 Pytorch에 대한 기초만 공부하시면 어려움 없이 강의를 수강하실 수 있을 것으로 생각합니다.  

지식공유자가 알려주는
강의 수강 꿀팁!
🎓
이런 분들께
추천드려요!
강화학습 환경 개발에 관심이 있는 개발자
강화학습의 이론과 구현에 관심이 있는 학생 및 연구자
📚
선수 지식,
필요한가요?
파이썬 및 PyTorch 사용 경험
기본적인 딥러닝 이론 (ANN, CNN)

안녕하세요
민규식 입니다.
민규식의 썸네일
공동 지식공유자: 이현호의 썸네일 정규열의 썸네일 정유정의 썸네일 박유민의 썸네일 김영록의 썸네일
커리큘럼 총 38 개 ˙ 7시간 18분의 수업
이 강의는 영상, 수업 노트, 첨부 파일이 제공됩니다. 미리보기를 통해 콘텐츠를 확인해보세요.
섹션 0. 강의 개요 및 소개
섹션 1. 강화학습 개요
강화학습이란? 미리보기 10:29
강화학습의 기초 용어 15:04
강화학습의 기초 이론 09:14
섹션 2. 유니티 머신러닝 에이전트 살펴보기
유니티 머신러닝 에이전트란 미리보기 13:55
유니티의 설치, 화면 구성 및 기초 조작 23:00
ML-Agents 설치 19:14
ML-Agents 살펴보기 23:46
ML-Agents 환경 학습 1 35:10
ML-Agents 환경 학습 2 09:22
섹션 3. 그리드월드 환경 제작하기
단원 개요 02:32
프로젝트 시작하기 07:51
스크립트 설명 06:07
Vector Observation 추가 및 환경 빌드 08:38
번외 (효과적인 코딩) 05:04
섹션 4. DQN 알고리즘
DQN 이론 20:03
DQN 실습 1 14:43
DQN 실습 2 21:10
섹션 5. A2C 알고리즘
A2C 이론 10:05
A2C 실습 1 05:20
A2C 실습 2 10:04
섹션 6. 드론 환경 제작하기
단원 개요 02:34
프로젝트 시작하기 09:19
드론 에셋 가져오기 & 오브젝트 추가 09:20
스크립트 작성 22:56
드론환경 실행 및 환경 빌드 03:32
섹션 7. DDPG 알고리즘
DDPG 이론 18:29
DDPG 실습 1 07:13
DDPG 실습 2 08:09
섹션 8. 카트 레이싱 환경 제작하기
단원 개요 02:34
프로젝트 시작하기 04:49
카트레이싱 환경 구성하기 11:15
스크립트 작성 및 환경 빌드 15:22
섹션 9. Behavioral Cloning 알고리즘
Behavioral Cloning 이론 05:12
BC 실습 1 03:44
BC 실습 2 08:03
Imitation Learning (mlagents) 11:04
섹션 10. 강의 마무리
강의 마무리 11:45
강의 게시일 : 2022년 01월 26일 (마지막 업데이트일 : 2022년 01월 09일)
수강평 총 6개
수강생분들이 직접 작성하신 수강평입니다. 수강평을 작성 시 300잎이 적립됩니다.
5.0
6개의 수강평
5점
4점
3점
2점
1점
VIEW 좋아요 순 최신 순 높은 평점 순 낮은 평점 순 평점 순 높은 평점 순 낮은 평점 순
CHANG YUN WOO thumbnail
유니티에서 학습 환경을 구성하여 강화학습을 구현하는데 전반적인 이해를 할 수 있었습니다. 아직 유니티에서 스크립트 실행에 에러가 발생하는데 앞으로 차차 나아지겠지요 도움이 많이 되었고 응용편도 아주 기대하고 있겠습니다.
2022-03-12
지식공유자민규식
안녕하세요! 좋은 수강평 남겨주셔서 정말 감사드립니다! 유니티 스크립트에서 어떤 에러가 발생하실까요? 질문란에 올려주시면 최대한 빠르게 답변 드리겠습니다! :)
2022-03-12
홍재권 thumbnail
강화학습 공부하면서 환경을 만드는 고민이 있었는데 이강의를 듣고 너무 깔끔하게 해결되었습니다 감사합니다.
2022-02-12
JAEHYUN BYEON thumbnail
강의 너무 잘 들었습니다!! 정말 강화학습 초보 입문자를 위한 최고의 강의였습니다. 다음에 심화/응용편으로 돌아오실때까지 열심히 독학하고 있겠습니다. 감사합니다.
2022-03-06
xrart01 thumbnail
강의 영상이 너무 좋습니다! 강화학습에 대한 전문 지식이 없더라도 충분히 이해 할 수 있었고 Unity ML-Agent에 대한 한국어 설명 자료 찾기가 어려운데 이 강의 하나면 기초 설계는 모두 할 수 있어서 좋습니다. 기초편 뿐만 아니라 중급, 고급편도 기대하겠습니다 ㅎㅎ
2022-04-22
pnltoen thumbnail
비전공, 문과생의 간단 후기 "초보자에게는 넓은 시야와 지식을 그 외에 분들에게는 강화학습 및 유니티 꿀팁을 얻을 수 있는 강의" 예전에 책도 구매하였는데 영상 강의가 있다는 소식에 달려왔습니다...! 유니티 환경 제작, 강화학습 이론 및 실습 등 정말 알차게 담겨있는 강의입니다. 크게 봐도 2개의 분야를 세세하게 알려주는 강의는 정말 흔하지 않습니다 (사실 없...죠 ㅠ) . 거기다가 단순 강화학습 이론뿐만 아니라 실습, 유니티 환경 구축 꿀팁까지 세부적인 내용이 정말 다채롭습니다. 특히 단순하게 글만 있는 것 보다 Unity로 시뮬레이션을 진행하니 되게 재밌으면서도 내가 머신러닝 에이전트를 만들 수 있구나....! 생각이 많이 들었습니다! 구매를 고민하신다면 저는 구매 강력 추천드립니다!!
2022-02-14
지식공유자 되기
많은 사람들에게 배움의 기회를 주고,
경제적 보상을 받아보세요.
지식공유참여
기업 교육을 위한 인프런
“인프런 비즈니스” 를 통해 모든 팀원이 인프런의 강의를
자유롭게 학습하는 환경을 제공하세요.
인프런 비즈니스