
線形代数学概論
tkn
この講座では線形代数学概論を取り上げ、講義を通じて線形代数学概論をマスターすることができます。
초급
Linear Algebra
In this course, you will learn how to solve various matrix calculation related problems using Python's SciPy library. Even if you do not know Python or have only a little prior knowledge, you will be able to solve the given problems.

How to solve linear algebra problems using python
Utilizing NumPy and SciPy Libraries
Practical applications of matrix operations and improved computational efficiency
🌿 CASE 2 🌿
Professor: Approximate this data with a quadratic function by tomorrow.
Student: Okay, I understand. How many data points are there?
Professor: 40,000.
student: ??
Professor: Oh, while we're at it, how about fitting a+b*sinh(x)+c*Log(x) as well? Can we do it quickly?
student: ?????????
🌿 CASE 3 🌿
Now that I'm not in college, I can't use Matlab... It's too expensive... Ha... But how do I solve matrix equations...? I'll have to solve some more in the future, but is there any way to do it?
To quickly solve matrix calculation problems, you need to use the NumPy and SciPy libraries in Python. Have you ever wanted to solve matrix equations using a computer? Want to find eigenvalues? Or do you need these functions right away?
In this course, you'll use Python's SciPy library to solve a variety of matrix calculation problems. Even if you don't know Python or have a basic understanding of introductory linear algebra, the content is designed to help you apply the knowledge immediately after taking the course. Don't worry, join us!
In this course, you will learn how to solve linear algebra problems on a computer using SciPy and NumPy.



Q. Is it true that matrix equations can be solved on a computer?
A. Of course. It would be stranger if it wasn't solved by computer!
Q. I need to find the eigenvalues of a large matrix right now. How do I do it? I can't solve it manually 😭😭
A. Don't worry. You can get it with just a few lines of Python code. This course is for you.
Q. I have no programming experience... but I want to solve linear algebra problems on a computer!
A. Welcome! It's easy to follow.
Q. I heard Python is slow... Isn't it impractical to learn it?
A. The SciPy functions we'll learn utilize functions written in Fortran (developed over decades!). They offer speed and accuracy that are sufficient for practical use.
Q. Where did you hear that... people usually write the code themselves...?
A. There are linear algebra-related functions that have been developed over decades, not just years. Just knowing how to use them can be a huge help in your life.
Who is this course right for?
For those who want to learn linear algebra concepts through actual coding practice
Anyone who wants to learn linear algebra using Python libraries NumPy and SciPy
Anyone who wants to expand their knowledge of computer science and mathematics by covering practical linear algebra concepts.
6,272
Learners
174
Reviews
387
Answers
4.7
Rating
7
Courses
새로운것을 배우고 가르치는걸 좋아합니다.
인프런을 통해 많은 분들에게 도움이 되면 좋겠습니다.
전문분야 (+좋아하는 분야) 👨🎓
출신학교
경력
링크
All
29 lectures ∙ (13hr 31min)
All
8 reviews
5.0
8 reviews
Reviews 2
∙
Average Rating 5.0
5
完了授業 25/29、受講時間 10h33m で最初の後期残します。こんなにうまくいかない人なので今残さなければ先延ばしになりそうです。 受講動機:ML勉強中にNumpy slicingを正確に学ぶ必要があり、講座を巡るよりここでカバーになりそうで受講しました。 後期:必要だったNumpy slicingを正確に学ぶ必要がありました。チョ・ボムヒ様の線形代数学講義を選手講はしませんでしたが、従うのに問題ありませんでした。このコースをじっくりと追いつくと、Scipyのlinalg関数の使い方を十分に学びます。関数の使い方の説明と例の構成が入念になり、受講生が '当然分かるだろう'と進むことなく詳しく解いて説明してくれます。そのため、先に上げたチョ・ボムヒ様の線形代数学講義が聞きたくなります。 (インフラをリニューアルしたら割引券解放してもらったんだけど…ありませんね。ㅎㅎ)
大切なレビューありがとうございます!!ㅎㅎ 教科書や与えられたカリキュラムがなくて作った講座なので、それなりの努力をして作った講座だから、個人的に愛着がたくさん行く講座です。 講座を見ながら不足したり、更新されてほしい部分があれば、いつでも私にメッセージやメールでフィードバックしていただければ、できるだけ反映させていただきます。 私が思いもよらない部分があるかもしれないので、受講生の皆さんの積極的な意見があれば、講座がさらに更新(!)され、修正されることがあります。 (今はまた別の数学関連講座を作っています。これからも多くの関心をお願いしますよㅎㅎ)
Reviews 5
∙
Average Rating 4.6
Reviews 4
∙
Average Rating 4.8
Reviews 6
∙
Average Rating 4.8
$42.90
Check out other courses by the instructor!
Explore other courses in the same field!