
Im Jang-hwan's Kalman Filter 1
jhim21
You can understand the theoretical operation principle of the Kalman Filter through easy examples.
Basic
kalman-filter, Probability and Statistics, Linear Algebra
Master the linear algebra content required for AI/deep learning by investing 10 minutes a day and completing it in one month.
77 learners
Level Basic
Course period Unlimited

Focus on studying only the core contents necessary for AI/deep learning
The parts that require mathematical theory are detailed.
Use specific examples to explain the theory in your head
Who is this course right for?
Machine learning, deep learning, computer vision, computer graphics, and engineering people
I also recommend it to those who studied liberal arts.
I also recommend it to people who lack basic math skills.
Need to know before starting?
The will to do it is essential
People who can invest consistently for a month
212
Learners
9
Reviews
7
Answers
4.7
Rating
4
Courses
박사 졸업 후 5년 정도 Computer vision를 공부하고 가르치는 계기가 돼서
지금까지 수학전공과 공학이론을 연결한 공부들을 하고 있습니다.
전문분야(공부 분야)
전공: 수학(Topological Geometry), 부전공(컴퓨터 공학)
현) 3D Computer Vision(3D Reconstruction) , Kalman Filter, Lie-group(SO(3)),
Stochastic Differential Equation 연구자
현) 유튜브 채널 운영: 임장환: 3D Computer Vision
현) facebook Spatial AI KR 그룹 (수학전문위원)
출신학교
독일 Kile 대학 이학박사 (Topological Geometry & Lie-group 전공, 컴퓨터 공학 부전공)
중앙대 수학과 학사, 석사(Topology 전공)
경력
전) 대성그룹 자회사 두비비젼 CTO
전) 중앙대학교 첨단영상 대학원 연구교수(3D Computer Vsion연구)
저서:
최적화이론: https://product.kyobobook.co.kr/detail/S000200518524
링크
유튜브: https://www.youtube.com/@3dcomputervision
블로그: https://blog.naver.com/jang_hwan_im
All
31 lectures ∙ (5hr 42min)
Course Materials:
All
5 reviews
4.6
5 reviews
Reviews 1
∙
Average Rating 5.0
Reviews 1
∙
Average Rating 5.0
Reviews 1
∙
Average Rating 5.0
Reviews 1
∙
Average Rating 5.0
Reviews 1
∙
Average Rating 3.0
$42.90
Check out other courses by the instructor!
Explore other courses in the same field!