강의

멘토링

로드맵

Inflearn brand logo image
AI Development

/

Deep Learning & Machine Learning

Hands-on Machine Learning 2

This lecture covers the contents of the Amazon bestseller <Hands-on Machine Learning 2nd Edition>. Using the representative machine learning library, scikit-learn, you will learn various machine learning algorithms and evaluation methods. Also, using the most famous deep learning libraries, TensorFlow and Keras, you will learn theories and practices from artificial neural networks to reinforcement learning. This lecture is not yet complete. One to two lectures will continue to be added every week.

(4.6) 42 reviews

6,225 learners

  • haesunpark
Tensorflow
Machine Learning(ML)
Deep Learning(DL)
Keras
Reinforcement Learning(RL)
Thumbnail

Reviews from Early Learners

What you will learn!

  • Machine learning and deep learning practices using scikit-learn, Tensorflow, and Keras

  • Linear regression, ridge regression, lasso regression, logistic regression

  • Support vector machines, decision trees, ensemble algorithms

  • Unsupervised learning models such as PCA, KernelPCA, KMeans, DBSCAN, and Gaussian mixture

  • Artificial neural network, CNN, RNN, attention mechanism, transformer algorithm

  • TF Data, distributed processing, GAN, autoencoder, reinforcement learning algorithm

Watch the video version of the Amazon bestseller, Hands-On Machine Learning, 2nd Edition!

Lecture Structure📚

PART 1 - Machine Learning

  • CHAPTER 1 Machine Learning at a Glance
  • CHAPTER 2 Machine Learning Projects from Start to Finish
  • CHAPTER 3 CLASSIFICATION
  • CHAPTER 4 MODEL TRAINING
  • CHAPTER 5 Support Vector Machines
  • CHAPTER 6 Decision Trees
  • CHAPTER 7: Ensemble Learning and Random Forests
  • CHAPTER 8 Dimensional Reduction
  • CHAPTER 9 Unsupervised Learning

PART 2 - Neural Networks and Machine Learning

  • CHAPTER 10: Introduction to Artificial Neural Networks Using Keras
  • CHAPTER 11: TRAINING DEEP NEURAL NETWORKS
  • CHAPTER 12: Custom Models and Training with TensorFlow
  • CHAPTER 13: Loading and Preprocessing Data in TensorFlow
  • CHAPTER 14 Computer Vision Using Convolutional Neural Networks
  • CHAPTER 15: Processing Sequences Using RNNs and CNNs
  • CHAPTER 16 Natural Language Processing Using RNNs and Attention
  • CHAPTER 17 Representation Learning and Generative Learning Using Autoencoders and GANs
  • CHAPTER 18 REINFORCEMENT LEARNING
  • CHAPTER 19 Training and Deploying Large-Scale TensorFlow Models

Recommended for
these people

Who is this course right for?

  • This is recommended for those who want to learn the theory and practice of machine learning and deep learning using Hands-On Machine Learning 2.

  • For those who want to learn more about Keras API and TensorFlow

Need to know before starting?

  • Python, NumPy

Hello
This is

19,405

Learners

183

Reviews

62

Answers

4.8

Rating

4

Courses

기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했습니다. 텐서 플로우 블로그(tensorflow.blog)에 글을 쓰고, 머신러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다. 

『챗GPT로 대화하는 기술』(한빛미디어, 2023), 『혼자 공부하는 데이터 분석 with 파이썬』(한빛미디어, 2023),『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020) , 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 썼습니다.

『코딩 뇌를 깨우는 파이썬』(한빛미디어, 2022), 『트랜스포머를 활용한 자연어 처리』(한빛미디어, 2022), 『케라스 창시자에게 배우는 딥러닝 2판』(길벗, 2022), 『개발자를 위한 머신러닝&딥러닝』(한빛미디어, 2022), 『XGBoost와 사이킷런을 활용한 그레이디언트 부스팅』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022), 『(개정2판)파이썬 라이브러리를 활용한 머신러닝』(한빛미디어, 2022), 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『파이토치로 배우는 자연어 처리』(한빛미디어, 2021), 『머신 러닝 교과서 3판』(길벗, 2021), 『딥러닝 일러스트레이티드』(시그마프레스, 2021), 『GAN 인 액션』(한빛미디어, 2020), 『핸즈온 머신러닝 2판』(한빛미디어, 2020), 『미술관에 GAN 딥러닝 실전 프로젝트』(한빛미디어, 2019), 『파이썬을 활용한 머신러닝 쿡북』(한빛미디어, 2019)을 포함하여 여러 권의 책을 우리말로 옮겼습니다.

Curriculum

All

23 lectures ∙ (14hr 36min)

Published: 
Last updated: 

Reviews

All

42 reviews

4.6

42 reviews

  • Seongpil Yim님의 프로필 이미지
    Seongpil Yim

    Reviews 2

    Average Rating 5.0

    5

    35% enrolled

    박해선 선생님의 강의는 정말 많은 도움이 됩니다. 교과서와 같은 핸즈온 머신러닝을 강의로 다뤄주셔서 너무 감사합니다. 앞으로도 자주 뵙겠습니다.

    • Da Kang님의 프로필 이미지
      Da Kang

      Reviews 15

      Average Rating 4.9

      5

      26% enrolled

      박해선 선생님께서 번역하신 책으로 입문해서 잘 배우고 있습니다 감사합니다.

      • 박해선
        Instructor

        도움이 되셨다니 기쁘네요. 댓글 남겨 주셔서 감사합니다! :)

    • 김영태님의 프로필 이미지
      김영태

      Reviews 2

      Average Rating 5.0

      5

      35% enrolled

      무료강의임에도 불구하고 상세한 강의 감사합니다.

      • 박해선
        Instructor

        좋은 평가 남겨 주셔서 감사합니다! :)

    • 똘똘이스머프님의 프로필 이미지
      똘똘이스머프

      Reviews 868

      Average Rating 5.0

      5

      100% enrolled

      머신러닝 강의 감사합니다. 익숙한 책에 대한 설명으로 쉽게 배운 것 같습니다.

      • 박해선
        Instructor

        좋은 평가 감사합니다!

    • 임홍록님의 프로필 이미지
      임홍록

      Reviews 1

      Average Rating 5.0

      5

      35% enrolled

      진짜 이해 쏙쏙..

    Free

    haesunpark's other courses

    Check out other courses by the instructor!

    Similar courses

    Explore other courses in the same field!