핸즈온 머신러닝 2
박해선
아마존 베스트 셀러인 <핸즈온 머신러닝 2판>의 내용을 다룬 강의입니다. 대표적인 머신러닝 라이브러인 사이킷런을 사용하여 다양한 머신러닝 알고리즘과 평가 방법을 배웁니다. 또 가장 유명한 딥러닝 라이브러인 텐서플로와 케라스를 사용하여 인공 신경망부터 강화학습까지 이론과 실무를 다져 봅니다. 아직 모두 완료된 강의가 아닙니다. 매주 1~2개의 강의가 계속 추가될 예정입니다.
초급
Tensorflow, 머신러닝, 딥러닝
The ultimate machine learning and deep learning tutorial that teaches you like a 1:1 private lesson with Hanbit Media's Honkong series, understand with hundreds of hand drawings, and practice right away with just a browser through Google Colab
Machine Learning
Deep Learning
scikit-learn
Tensorflow
Map learning
Unsupervised learning
artificial neural network
Convolutional Neural Network
recurrent neural network
👀 Attention those studying machine learning and deep learning on their own 👀
This book is designed to help self-taught beginners, tired of machine learning and deep learning books heavy on formulas and theories, learn the essentials. The author, a Google ML expert, has worked with beginners on numerous machine learning and deep learning studies, as well as translated and written articles. Through this experience, he understands the vagueness of beginners who don't know "what" and "how" to learn. He kindly points out the essentials, as if he were a private tutor. By following [Hand Coding] in front of your computer and solving verification problems, you'll be able to grasp the concepts of machine learning and deep learning on your own, something that was previously considered difficult!
Through a beta-reading process, we carefully considered and reflected the appropriate difficulty level, length, and learning elements for beginners. Difficult terms and concepts were rewritten, and complex explanations were presented with visually appealing illustrations. The book's greatest strength lies in the reflection of the experiences and perspectives of numerous beginners who have "studied independently."
Who is this course right for?
For those who want to build a foundation for learning machine learning and deep learning intermediate courses
Those who hesitated to learn machine learning and deep learning because of the difficult theories
For those who want to apply their knowledge to practice rather than theory
For those who want to learn with easy-to-understand explanations rather than math
Need to know before starting?
Python
19,291
Learners
178
Reviews
62
Answers
4.8
Rating
4
Courses
기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했습니다. 텐서 플로우 블로그(tensorflow.blog)에 글을 쓰고, 머신러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다.
『챗GPT로 대화하는 기술』(한빛미디어, 2023), 『혼자 공부하는 데이터 분석 with 파이썬』(한빛미디어, 2023),『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020) , 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 썼습니다.
『코딩 뇌를 깨우는 파이썬』(한빛미디어, 2022), 『트랜스포머를 활용한 자연어 처리』(한빛미디어, 2022), 『케라스 창시자에게 배우는 딥러닝 2판』(길벗, 2022), 『개발자를 위한 머신러닝&딥러닝』(한빛미디어, 2022), 『XGBoost와 사이킷런을 활용한 그레이디언트 부스팅』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022), 『(개정2판)파이썬 라이브러리를 활용한 머신러닝』(한빛미디어, 2022), 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『파이토치로 배우는 자연어 처리』(한빛미디어, 2021), 『머신 러닝 교과서 3판』(길벗, 2021), 『딥러닝 일러스트레이티드』(시그마프레스, 2021), 『GAN 인 액션』(한빛미디어, 2020), 『핸즈온 머신러닝 2판』(한빛미디어, 2020), 『미술관에 GAN 딥러닝 실전 프로젝트』(한빛미디어, 2019), 『파이썬을 활용한 머신러닝 쿡북』(한빛미디어, 2019)을 포함하여 여러 권의 책을 우리말로 옮겼습니다.
All
25 lectures ∙ (18hr 20min)
All
62 reviews
Free
Check out other courses by the instructor!
Explore other courses in the same field!