
ChatGPT API를 이용한 인공지능 웹서비스 개발
자바전문가그룹
OpenAI사의 API를 이용해서 인공지능 웹서비스를 개발하는 방법을 설명합니다.
Basic
ChatGPT, 인공지능(AI), openAI API
🧩 Rather than complex formulas or theory-focused explanations, the goal is to learn the core concepts of recommendation systems by directly implementing programs. 🛠️ Across 12 diverse, practical examples, we incrementally built recommendation systems for real-world use, covering content-based, collaborative filtering, and deep learning methods.
Non-personalized Recommendation Algorithm: Concept and Implementation
Personalized Recommendation Algorithms: Concepts and Implementation
Non-personalization, personalization algorithms, and diversity-aware recommendation systems: Working principles and implementation
Who is this course right for?
Anyone interested in the principles and implementation of recommendation systems
Those interested in directly implementing a recommendation system, rather than complex formulas or theory-focused explanations
Recommendation system learners utilizing 12 diverse, practical examples.
People who want to build a recommendation system that reflects diversity, not just a simple recommendation algorithm.
Need to know before starting?
Python, a language easy for beginners to understand and learn.
Pandas, a library for analyzing and processing data
Google Colab, cloud-based lab environment (GPU support)
안녕하세요, 강의를 맡은 조경원입니다.
저는 중소기업부터 대기업까지 다양한 산업 환경에서 웹 개발, 인공지능(AI), 그리고 AWS 인프라 구축 등 폭넓은 실무 경험을 쌓아왔습니다.
이러한 경험을 바탕으로 2022년부터는 오프라인에서 AI 분야의 강의를 진행하며, 실무와 이론을 연결하는 교육을 이어오고 있습니다.
All
25 lectures ∙ (9hr 2min)
Course Materials:
Explore other courses in the same field!