Pixart & SANA, Complete Mastery of Diffusion III: Learning Through Implementation
Sotaaz
We implement the latest Transformer-based PixArt and lightweight adaptation SANA step by step from theory to code. Building on DDPM·DDIM·LDM·DiT covered in Parts I·II, we complete hands-on practice including text encoder integration, samplers (DDIM/ODE), v-prediction/CFG tuning, and small-scale data style fine-tuning.
중급이상
Python, PyTorch, AI









![[AI Practice] Getting Started with Paper Implementation for AI Research Engineers with PyTorch강의 썸네일](https://cdn.inflearn.com/public/courses/334289/cover/b8885796-1e67-4983-9432-bcda0daae927/334289.png?w=420)
![[OpenCV] Python Deep Learning Image Processing Project 2 - Find the Bad Apples!강의 썸네일](https://cdn.inflearn.com/public/courses/325290/course_cover/0f6dc5fe-e6e6-414a-af6d-10f589e50788/openCV-dnn2-rotten-apple-eng.jpg?w=420)
![[OpenCV] Python Deep Learning Image Processing Project - Find Son Heung-min!강의 썸네일](https://cdn.inflearn.com/public/courses/324508/course_cover/067408c8-819a-4a84-bd51-0ffb20a4ec3d/sjh_opencv.png?w=420)
![[Tensorflow2] Complete conquest of Python machine learning - Marathon record prediction project강의 썸네일](https://cdn.inflearn.com/public/courses/324207/course_cover/1a79c7dc-1624-4d3a-95ff-79ba1e9c4025/python_machine_learning.png?w=420)