묻고 답해요
164만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
langchain howto/sequence는 지금 doc 공식 사이트 어디서 확인할 수 있나요?
| 이런 파이프라인 문법 수업중에 보이는 how-to-guides의 링크가 어디인가요? 공식문서가 많이 업데이트 되었는지 수업 전반으로 일치하는 부분 찾기가 너무 힘드네요...
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
new_question에 대한 답 출력
new_question 이 ''연봉 5천만원인 거주자의 소득세는 얼마인가요?'' 이라는 질문만 내놓고, 답은 내놓지 않습니다%pip install python-dotenv langchain langchain-upstage langchain-community langchain-text-splitters langchain-pinecone docx2txtfrom langchain_community.document_loaders import Docx2txtLoader from langchain_text_splitters import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1500, chunk_overlap=200, ) loader = Docx2txtLoader('./tax.docx') document_list = loader.load_and_split(text_splitter=text_splitter)from dotenv import load_dotenv from langchain_upstage import UpstageEmbeddings # 환경변수를 불러옴 load_dotenv() # OpenAI에서 제공하는 Embedding Model을 활용해서 `chunk`를 vector화 embedding = UpstageEmbeddings(model="embedding-query")from langchain_pinecone import PineconeVectorStore # 데이터를 처음 저장할 때 index_name = 'tax-upstage-index' database = PineconeVectorStore.from_documents(document_list, embeddin g, index_name=index_name)query = '연봉 5천만원인 직장인의 소득세는 얼마인가요?' # `k` 값을 조절해서 얼마나 많은 데이터를 불러올지 결정 retrieved_docs = database.similarity_search(query, k=3)retrieved_docsfrom langchain_upstage import ChatUpstage llm = ChatUpstage()from langchain_core.prompts import PromptTemplate prompt_with_template = '아래 질문에 답변해주세요:\n\n {query}' prompt_template = PromptTemplate(template=prompt_with_template, input_variables={"query"})from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate dictionary = ["사람을 나타내는 표현 -> 거주자"] prompt = ChatPromptTemplate.from_template(f""" 사용자의 질문을 보고, 우리의 사전을 참고해서 사용자의 질문을 변경해주세요. 만약 변경할 필요가 없다고 판단된다면, 사용자의 질문을 변경하지 않아도 됩니다. 그런 경우에는 질문만 리턴해주세요 사전: {dictionary} 질문: {{question}} """) dictionary_chain = prompt | llm | StrOutputParser() tax_chain = {"query": dictionary_chain} | prompt_templatenew_question = dictionary_chain.invoke({"question": query})new_questionRetrievalQA 가 사라져서 PromptTemplate 랑 Pinecorn으로 어떻게든 대체하려고 했는데 엉망이 된거 같습니다. ㅠㅠ어떻게 하면 답까지 내놓게 할 수 있을까요?
-
해결됨한시간으로 끝내는 LangChain 기본기
도서, 그리고 로드맵 강의 순서
안녕하세요, 일단 책 출간하는 점 축하드립니다.그리고 여쭤볼 사항이 있습니다.제이쓴님의 "AI Agent 실무 적용 완전 정복 로드맵" 강의를 전부 구매했고, 현재 한시간으로 끝내는 LangChain 기본기만 전부 들은 상태입니다. 지금까지 나온 강의는 다 듣고 복습하는 느낌으로 책을 읽는 게 좋을까요? 1) AI Agent 실무 적용 완전 정복 로드맵 -> 책 -> 신규강의2) 책 -> AI Agent 실무 적용 완전 정복 로드맵 + 추후 신규강의
-
미해결LangGraph를 활용한 AI Agent 개발 (feat. MCP)
md vs txt 차이..
안녕하세요. 강의 도중에세법 pdf => 마크다운 변경후에 Spliiter로 분할하면, 표가 짤려서 답변이 생성이 잘 안될수도 있다고 하셔서 txt로 진행한다고 하셨는데..전 궁금한게 txt도 마차가지로 스플릿을 하더라도 짤리지 않나요..?text_spliters = RecursiveCharacterTextSplitter( chunk_size=1500, chunk_overlap = 100, separators=['\n\n','\n'] )청크사이즈가 1500 이니까 뭔가 표랑 경계선이 겹치게 되면 txt도 마찬가지 짤리는게 아닐까.. 생각이 들어서요
-
미해결graphRAG - Neo4J로 구현하는 지식 그래프 기반 RAG 시스템 (feat. LangChain)
fulltext index 생성이 안됩니다
지식그래프(KG) 검색 - 전문 검색에서 fulltext index 생성이 안됩니다. 여러번 실행해도 동일합니다.아래 3개 중 movie_title_tagline_fulltext만 생성되고 movie_title_fulltext와 person_name_fulltext는 실행해도 반응이 없습니다.SHOW FULLTEXT INDEXES를 실행하면 movie_title_tagline_fulltext만 표시됩니다. Neo4j 버전: 버전 2.1.1(2.1.1)Neo4j는 Desktop 버전으로 실행했습니다. [참고]실행 파일: KG_P1_03_neo4j_movie_03_full-text_search.ipynb [스크립트]CREATE FULLTEXT INDEX movie_title_fulltext IF NOT EXISTSFOR (m:Movie) ON EACH [m.title] CREATE FULLTEXT INDEX movie_title_tagline_fulltext IF NOT EXISTS FOR (m:Movie) ON EACH [m.title, m.tagline] CREATE FULLTEXT INDEX person_name_fulltext IF NOT EXISTSFOR (p:Person) ON EACH [p.name]
-
미해결LangGraph를 활용한 AI Agent 개발 (feat. MCP)
OpenAI API 호출 때문에 발생하는 Error code: 429 문제
gpt 유료 버전을 결제해야 하는 걸까요? 무료로는 불가능 할까요?
-
미해결처음 해보는 맞춤형 LLM 만들기 – LoRA & QLoRA 파인튜닝 입문
타임아웃 문제
타임아웃 에러 때문에 마지막 실습이 어렵습니다.==((====))== Unsloth 2026.1.2: Fast Llama patching. Transformers: 4.57.3. \\ /| Tesla T4. Num GPUs = 1. Max memory: 14.741 GB. Platform: Linux. O^O/ \_/ \ Torch: 2.9.0+cu126. CUDA: 7.5. CUDA Toolkit: 12.6. Triton: 3.5.0 \ / Bfloat16 = FALSE. FA [Xformers = None. FA2 = False] "-____-" Free license: http://github.com/unslothai/unsloth Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored! --------------------------------------------------------------------------- TimeoutError Traceback (most recent call last) /usr/local/lib/python3.12/dist-packages/unsloth/models/_utils.py in _get_statistics(statistics, force_download) 1173 try: -> 1174 time_limited_stats_check() 1175 except TimeoutError: 6 frames/usr/local/lib/python3.12/dist-packages/unsloth_zoo/rl_environments.py in wrapper(*args, **kwargs) 774 elif effective_backend == "process": --> 775 return _run_in_subprocess(func, seconds, args, kwargs, 776 start_method=start_method, kill_grace=kill_grace) /usr/local/lib/python3.12/dist-packages/unsloth_zoo/rl_environments.py in _run_in_subprocess(func, seconds, args, kwargs, start_method, kill_grace) 701 proc.join() --> 702 raise TimeoutError(f"Timed out after {seconds:g}s") 703 except KeyboardInterrupt: TimeoutError: Timed out after 120s During handling of the above exception, another exception occurred: TimeoutError Traceback (most recent call last) /tmp/ipython-input-2933263888.py in <cell line: 0>() 4 5 # ✅ STEP 1: 모델 및 토크나이저 로딩 (Unsloth LLaMA 3.1 8B 기준) ----> 6 model, tokenizer = FastLanguageModel.from_pretrained( 7 model_name = "unsloth/Meta-Llama-3.1-8B", 8 max_seq_length = 2048, /usr/local/lib/python3.12/dist-packages/unsloth/models/loader.py in from_pretrained(model_name, max_seq_length, dtype, load_in_4bit, load_in_8bit, load_in_16bit, full_finetuning, token, device_map, rope_scaling, fix_tokenizer, trust_remote_code, use_gradient_checkpointing, resize_model_vocab, revision, use_exact_model_name, offload_embedding, float32_mixed_precision, fast_inference, gpu_memory_utilization, float8_kv_cache, random_state, max_lora_rank, disable_log_stats, qat_scheme, load_in_fp8, unsloth_tiled_mlp, *args, **kwargs) 582 load_in_8bit_kwargs = False 583 --> 584 model, tokenizer = dispatch_model.from_pretrained( 585 model_name = model_name, 586 max_seq_length = max_seq_length, /usr/local/lib/python3.12/dist-packages/unsloth/models/llama.py in from_pretrained(model_name, max_seq_length, dtype, load_in_4bit, token, device_map, rope_scaling, fix_tokenizer, model_patcher, tokenizer_name, trust_remote_code, revision, fast_inference, gpu_memory_utilization, float8_kv_cache, random_state, max_lora_rank, disable_log_stats, unsloth_vllm_standby, num_labels, qat_scheme, **kwargs) 2202 model_patcher.pre_patch() 2203 # For debugging - we use a download counter to see if environments are not breaking or if HF is down -> 2204 get_statistics(kwargs.get("local_files_only", False)) 2205 2206 if dtype is None: /usr/local/lib/python3.12/dist-packages/unsloth/models/_utils.py in get_statistics(local_files_only) 1212 disable_progress_bars() 1213 disabled = True -> 1214 _get_statistics(None) 1215 _get_statistics("repeat", force_download = False) 1216 total_memory = ( /usr/local/lib/python3.12/dist-packages/unsloth/models/_utils.py in _get_statistics(statistics, force_download) 1174 time_limited_stats_check() 1175 except TimeoutError: -> 1176 raise TimeoutError( 1177 "Unsloth: HuggingFace seems to be down after trying for 120 seconds :(\n" 1178 "Check https://status.huggingface.co/ for more details.\n" TimeoutError: Unsloth: HuggingFace seems to be down after trying for 120 seconds :( Check https://status.huggingface.co/ for more details. As a temporary measure, use modelscope with the same model name ie: ``` pip install modelscope import os; os.environ['UNSLOTH_USE_MODELSCOPE'] = '1' from unsloth import FastLanguageModel model = FastLanguageModel.from_pretrained('unsloth/gpt-oss-20b') ```해결 방법이 있을까요? 강사님...
-
미해결Agentic(Modular) RAG with LangGraph version 1 기초부터 고급까지
Model 강의자료 어디있나요?
Model 강의자료가 보이지 않습니다
-
미해결RAG 마스터: 기초부터 고급기법까지 (feat. LangChain)
Cross Encoder Reranker 임포트 에러 관련 내용입니다.
랭채인 버전 관련 정보 입니다.langchain 1.2.0langchain-classic 1.0.1langchain-community 0.4.1langchain-core 1.2.5langchain-huggingface 1.2.0langchain-text-splitters 1.1.0langgraph 1.0.5langgraph-checkpoint 3.0.1langgraph-prebuilt 1.0.5langgraph-sdk 0.3.1langsmith 0.5.2 이전 답변 내용에서from langchain_classic.retrievers.document_compressors import CrossEncoderReranker이 부분도 역시 에러가 발생합니다원래 코드 였던from langchain.retrievers.document_compressors import CrossEncoderReranker이 코드에서는 에러가 발생하지 않지만여전히from langchain_community.cross_encoders import HuggingFaceCrossEncoder 이코드에서 에러가 발생합니다 PROBLEMS[{ "resource": "/c:/study/conda_rag/LangChain_005_Advanced_Retrieval.ipynb", "owner": "workbench.notebook.cellDiagnostics", "severity": 8, "message": "ImportError: cannot import name 'create_model' from 'langchain_core.utils.pydantic' (c:\\D\\miniconda3\\envs\\langchain_env\\Lib\\site-packages\\langchain_core\\utils\\pydantic.py)", "source": "Cell Execution Error", "startLineNumber": 4, "startColumn": 1, "endLineNumber": 4, "endColumn": 71}] 전체 에러 콜백 은 아래와 같습니다 ---------------------------------------------------------------------------ImportError Traceback (most recent call last)Cell In[31], line 31 from langchain.retrievers import ContextualCompressionRetriever2 from langchain.retrievers.document_compressors import CrossEncoderReranker----> 3 from langchain_community.cross_encoders import HuggingFaceCrossEncoder5 #from langchain_classic.retrievers.document_compressors import CrossEncoderReranker6 #from langchain_community.cross_encoders.huggingface import HuggingFaceCrossEncoder12 model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-v2-m3")File c:\D\miniconda3\envs\langchain_env\Lib\site-packages\langchain_community\cross_encoders\__init__.py:47, in getattr(name)45 def getattr(name: str) -> Any:46 if name in modulelookup:---> 47 module = importlib.import_module(_module_lookup[name])48 return getattr(module, name)49 raise AttributeError(f"module {__name__} has no attribute {name}")File c:\D\miniconda3\envs\langchain_env\Lib\importlib\__init__.py:126, in import_module(name, package)124 break125 level += 1--> 126 return bootstrap.gcd_import(name[level:], package, level)File c:\D\miniconda3\envs\langchain_env\Lib\site-packages\langchain_community\cross_encoders\huggingface.py:51 from typing import Any, Dict, List, Tuple3 from pydantic import BaseModel, ConfigDict, Field...(...) 36 model_validator,37 )38 from typing_extensions import overrideImportError: cannot import name 'create_model' from 'langchain_core.utils.pydantic' (c:\D\miniconda3\envs\langchain_env\Lib\site-packages\langchain_core\utils\pydantic.py)
-
미해결RAG 마스터: 기초부터 고급기법까지 (feat. LangChain)
HuggingFaceCrossEncoder 임포트 에러
학습 관련 질문이 있으시면, 상세하게 남겨주세요.문제가 발생한 부분의 코드를 함께 올려주세요.수업 영상 몇 분/초 구간인지 알려주세요.3-2. Re-rank 에서from langchain_community.cross_encoders import HuggingFaceCrossEncoder이 구문에서 임포트 에러가 납니다---------------------------------------------------------------------------ImportError Traceback (most recent call last) Cell In[47], line 4 2 from langchain.retrievers.document_compressors import CrossEncoderReranker 3 #from langchain_community.cross_encoders import HuggingFaceCrossEncoder ----> 4 from langchain_community.cross_encoders import HuggingFaceCrossEncoder
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
랭체인 라이브러리
docs2txt 같은 라이브러리를 랭체인에 있는 것을 사용하는 이유가 있을까여?순수라이브러리를 사용하면 조금 더 가볍지 않나 싶어서요!
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
[LangGraph를 활용한 AI Agent 개발] 쿠폰 유효기간
안녕하세요. 좋은 강의를 잘 들었습니다.[LangGraph를 활용한 AI Agent 개발] 강의를 이어서 수강하려고 하는데 할인 쿠폰 링크에 들어가보니 유효기간이 끝났다고 하는데, 할인 받을 수 있는 방법은 없는건가요? 확인 부탁 드립니다.🤖
-
해결됨메이드 인 RAG(로컬 LLM Q&A시스템) With Docker + ollama + R2R
강사님 ㅜㅜ QA만들기 강의가 아닌것 같아요,,
저는 QA시스템을 원해서 강의 구매를 했는데(왜냐면,, 제목도 이미지도 모두 QA라고 적혀있어서..)실제 강의를 들어보니까 Q&A시스템 만들기라고 되어있더라구요,,그래서 너무 당황해서 본문이랑 제목 다 읽어보니까 QA랑 Q&A 용어가 혼재되어 적혀있는거같은데Q&A시스템이라고 제목이랑 이미지 본문 내용이 수정되어야할 것 같습니다.. 저는 QA시스템이 궁금했던거거든여.. ㅠ
-
미해결프로젝트로 배우는 Python 챗봇 & RAG - LangChain, Gradio 활용
Gradio 런치 PDF 관련 에러
Gradio ChatInterface로 PDF 챗봇 애플리케이션 구현 (실습)강의에서 작성하신 코드를 그대로 똑같이 적용해서 돌렸는데 이런 에러가 뜨네요.TypeError: argument of type 'bool' is not iterableERROR: Exception in ASGI applicationdemo = gr.ChatInterface(fn=process_pdf_and_answer, additional_inputs=[ PDF(label="Upload PDF file"), gr.Number(label="Chunk Size", value=1000), gr.Number(label="Chunk Overlap", value=200), gr.Dropdown(["cosine", "l2"], label="similarity metric", value="cosine"), gr.Slider(label="Temperature", minimum=0, maximum=2, step=0.1, value=0.0), ], ) gradio launch 시 additional_inputs에 PDF를 제외하면 launch가 되는데, PDF를 포함하니까 위의 에러가 뜨면서 launch 자체가 안 돼요.gradio document를 봐도 이해가 잘 안 돼서요..코드를 어떻게 수정하면 될까요?
-
미해결LLM 기초부터 최신 RAG·LangChain까지: 단 5시간 만에 LLM 기초과정 마스터!
sLLM관련 강의 내용 문의
sLLM을 설명을 주었는데, 내용은 SLM으로 보입니다. 다른 강의 자료를 보면 SLM과 sLLM를 구분하여 설명하고 있는데, 강의 내용은 sLLM 이 아닌 SLM으로 보입니다. 어떤 내용이 맞는지 확인 부탁드립니다.
-
미해결한시간으로 끝내는 LangChain 기본기
RAG와 MCP의 차이가 조금 헷갈립니다
강사님 RAG와 MCP의 차이가 조금 헷갈립니다!
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
postgresql의 pgvector 벡터는 어떤가요?
안녕하세요.이번에 회사 내부에서 AI Agent를 도입 예정인데요.회사 DB는 대부분 postgresql로 구성되어 있는데, postgresql에서 pgvector 벡터 데이터베이스를 제공하더라고요?사용해도 성능이 괜찮을지.. 혹시 경험이 있을지 궁금해서요. 혹시 주위분들에게 들은 거라도 있으신지 ㅠ
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
doc관련
소득세법 을 최신파일로 다운받고 똑같이 했는데(물론 다른 결과가 나오는게 정상이지만), 좀 다르게 나오네요. 실습파일을 올려주시면 좋을 거 같아요.(1년저니라 다를수도) " 결과"연봉 5천만원인 직장인의 소득세 계산은 복잡하며, 여러 단계에 걸쳐 이루어집니다. 기본적으로 근로소득공제, 인적공제, 추가공제 등을 통해 과세표준을 구하고, 이에 소득세율을 적용하여 산출세액을 계산합니다. 이후 다양한 세액공제를 적용하여 최종 납부할 세액을 산출하게 됩니다. 구체적인 계산은 다음과 같습니다. 1. 근로소득공제: - 연봉 5천만원에 대한 근로소득공제를 적용합니다. 공제액이 2천만원을 초과하는 경우에는 2천만원을 공제합니다. 따라서 근로소득공제액은 2천만원입니다. 2. 과세표준 계산: - 과세표준 = 총급여 - 근로소득공제 - 기타 필요경비(기본공제, 추가공제 등) - 기본공제는 연 150만원입니다. (단일 거주자로 가정) - 과세표준 = 5천만원 - 2천만원 - 150만원 = 2,850만원 3. 세율 적용: - 과세표준 구간별로 소득세율이 다르게 적용됩니다. (예: 2,850만원일 경우 소득세율은 일반적으로 \[단순한 설명을 위해 특정 세율로 계산\]) - 실제 세율 적용 과정은 복잡하며, 과세표준 구간에 따른 누진세율을 반영하여 정확하게 계산해야 합니다. 4. 세액공제 등: - 연금보험료공제 등 다른 공제항목들이 있으면 추가로 반영합니다. 이외에도 세금 계산 시 다양하고 복잡한 규정들이 많으므로, 정확한 세금 계산을 위해 세무사 등 전문가의 도움을 받는 것이 좋습니다. 개인의 소득구조, 부양가족, 제출 가능한 증빙자료 등에 따라 최종 세액은 크게 달라질 수 있습니다.
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
load_dotenv() 실행 False
from dotenv import load_dotenvload_dotenv() 전단계 모두 설치 다되었는데요위 코드 실행하면 False가 나옵니다. ㅠㅠ
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
RAG 답변 개선을 위한 정답지 활용 구조 검토 요청
강사님 안녕하세요! 지난번 알려주신 구글 시트 로그 적재 팁 덕분에 챗봇 로그가 잘 쌓이고 있습니다. 감사합니다.이렇게 수집된 [피드백 데이터]*를 활용해 챗봇 성능을 높이려 하는데, 아래 방식으로 구현해도 괜찮을지 의견 여쭙니다! (*데이터 내용: 사용자질문/챗봇답변/평가(좋아요, 싫어요)/답변개선방향)[현재 고민] 피드백 받은 답변개선방향(ex. 챗봇 답변이 ~~식으로 되어야 합니다)을 실시간 프롬프트에 반영하자니 케이스도 많고, 답변 속도도 저하될 것 같아서, 아예 [피드백 데이터]에서 답변을 잘하지 못한 질문에 대한 [정답 답변]을 만들어서 우선 검색하는 방식을 고려 중입니다.[고려 중인 로직]QA데이터셋(정답지): 사용자 질문과 정답 답변(담당팀 검수 답변) 간 유사도 비교분기 처리(Threshold):유사도 0.9 이상: QA 데이터의 답변을 즉시 반환 (LLM 생성 X)유사도 0.9 미만: 기존 RAG 프로세스 (문서 검색 -> LLM 답변 생성) [문의 사항]방법론 검증: 위와 같이 임계값(Threshold 0.9)을 임의로 정하고 정답지 검색을 앞단에 배치하는 방식이 실무적으로 괜찮은 접근일까요?대안 문의: 일반적으로 현업에서 피드백(Human Feedback) 데이터를 RAG에 반영하여 정확도를 높일 때 사용하는 더 나은 방법이 있을까요?바쁘시겠지만 짧게라도 조언 주시면 큰 도움이 될 것 같습니다! 참고로 저는 비개발자입니다!