묻고 답해요
161만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 질문입니다!
optimizer에서 이미 안장점이나, 최적의 업데이트를 하기 위한 시도와 노력을 하는데 call back을 하는 이유가 '그럼에도 불구하고' 안될 수 있기 때문에 하는건가요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Segmentation
안녕하세요, 선생님.pretrained 모델을 기반으로 해서 segmentation하는 custom 모델을 만드려고합니다.관련 코드가 섹션 15 Mask RCNN에 opencv_mask_rcnn_infrence인 것 같아 참고하고 있는데요.그래서 먼저 CVAT 툴을 이용하여 train, val job을 각각 만들고 폴리곤으로 이미지에 손상 영역을 그려주었습니다.이후, Export job dataset - coco 1.0 포맷으로 내보냈는데coco 1.0과 coco kepoints 1.0의 포맷 차이가 궁금합니다. 그리고 어떤 포맷으로 내보내는게 정답인지도 궁금합니다. 또, 그리고 나서 labels_to_names_seq= {0:'gap'} 로 클래스명을 수정 매핑해주고다른 코드는 수정하지 않고 돌리는데 오류가 떠서 무슨 문제인지 몰라 여쭤봅니다. 추가적으로 전혀 다른 분야의 새로운 이미지를 라벨링해서 쓸 때 어떠한 부분을 수정하여야 하고 유의해서 써야하는 지 답변해주실 수 있으실까요..부탁드립니다!
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 질문입니다!
뒤에 수업까지 듣고 와서 이렇게 다시 질문드립니다!CNN이 Dense layer와 다르게 universal한 피처맵을 만들어 덴스레이어로 보내기 때문에 이미지내 다양한 위치에 있는 object를 찾을 수 있다고 강의를 통하여 배웠는데.그렇다면 이 필터들은 많은 이미지 내에서 다양한 위치에있는 object를 찾아낼 수 있게 끔 업데이트가 되는 것이 맞는지요.만약 맞다면 데이터 전처리를 할 때, 해당 물체의 위치가 되도록 가변적이지 않도록 하는 것이 모델 학습능력을 상승시키는 거라 생각하는데, 잘못 이해하고 있는건지 답변 부탁드리겠습니다!
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 안녕하세요! 질문입니다.
너무 많은 질문을 드려서 죄송합니다.공부를 하다 보니 이미지 전처리를 하고, 모델을 만들고 만든 모델로 배치사이즈를 정해서 학습시키고 평가하는 것 까지 과정은 이해가 갔는데.. 앞으로 가면서도 약간 헷갈리는 것이각각의 레이블들을 원핫 인코딩으로 만들고 그것과의 차이를 토대로 loss 와 accuracy를 구하는 걸로 아는데, 그럼 학습 과정에서 만약 강아지(0, 0, 1, 0, 0, 0, 0)라는 테스트 레이블이 있다면 이미지가 모델을 거쳐 마지막 소프트맥스 까지 거친 값(가령 0.233, 0.2302, 0.12, ---)과 저 레이블 값과의 loss와 accuracy를 구하는 건가요?
-
미해결[라즈베리파이] IoT 딥러닝 Computer Vision 실전 프로젝트
64bit picamera 관련 질문
OS를 64bit로 설치하고 tensorflow까지 설치를 했는데 picamera가 안깔립니다.32bit에만 설치된다고 인터넷에서 봤는데, 어떻게 해결할 수 있을까요?
-
미해결비전공자를 위한 진짜 입문 올인원 개발 부트캠프
"세팅 제이슨" 질문 보고왔는데 안되서 질문드립니다.
설정 창에 검색하니까 settings.json 이 안나오네요 ㅠㅠ 어떡하죠 편집이 안되네요 윈도우라 ctrl shift p 누르면 settings.json은 나와요
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 질문입니다!
ReduceLRonplateau & Early stopping (patient = 3) 기준에 부합하지 않는 데이터가 연속적으로 나와야 종료하나요?(ex. x x x 실행 )아니면 3번 카운팅 되면 실행되는 건가요?(ex. x o o x o x 실행)
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
setuptools 버전 오류
pip install -r yolov3/requirements.txt모듈 설치중에"ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. cvxpy 1.3.0 requires setuptools<=64.0.2, but you have setuptools 67.6.0 which is incompatible."setuptools 버전 오류가 뜨면서 모듈 설치가 원활하게 진행되지 않습니다.어떤 방법으로 해결해야 할까요?모든 코드Cloning into 'yolov3'... remote: Enumerating objects: 10324, done. remote: Counting objects: 100% (246/246), done. remote: Compressing objects: 100% (193/193), done. remote: Total 10324 (delta 110), reused 148 (delta 52), pack-reused 10078 Receiving objects: 100% (10324/10324), 9.70 MiB | 12.12 MiB/s, done. Resolving deltas: 100% (6909/6909), done. Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting gitpython Downloading GitPython-3.1.31-py3-none-any.whl (184 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 184.3/184.3 KB 10.1 MB/s eta 0:00:00 Requirement already satisfied: ipython in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 6)) (7.9.0) Requirement already satisfied: matplotlib>=3.2.2 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 7)) (3.7.1) Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 8)) (1.22.4) Requirement already satisfied: opencv-python>=4.1.1 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 9)) (4.7.0.72) Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 10)) (8.4.0) Requirement already satisfied: psutil in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 11)) (5.9.4) Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 12)) (6.0) Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 13)) (2.27.1) Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 14)) (1.10.1) Collecting thop>=0.1.1 Downloading thop-0.1.1.post2209072238-py3-none-any.whl (15 kB) Requirement already satisfied: torch>=1.7.0 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 16)) (1.13.1+cu116) Requirement already satisfied: torchvision>=0.8.1 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 17)) (0.14.1+cu116) Requirement already satisfied: tqdm>=4.64.0 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 18)) (4.65.0) Requirement already satisfied: tensorboard>=2.4.1 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 22)) (2.11.2) Requirement already satisfied: pandas>=1.1.4 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 27)) (1.4.4) Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 28)) (0.12.2) Collecting setuptools>=65.5.1 Downloading setuptools-67.6.0-py3-none-any.whl (1.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 55.5 MB/s eta 0:00:00 Requirement already satisfied: wheel>=0.38.0 in /usr/local/lib/python3.9/dist-packages (from -r yolov3/requirements.txt (line 43)) (0.40.0) Collecting gitdb<5,>=4.0.1 Downloading gitdb-4.0.10-py3-none-any.whl (62 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.7/62.7 KB 7.6 MB/s eta 0:00:00 Requirement already satisfied: decorator in /usr/local/lib/python3.9/dist-packages (from ipython->-r yolov3/requirements.txt (line 6)) (4.4.2) Requirement already satisfied: pygments in /usr/local/lib/python3.9/dist-packages (from ipython->-r yolov3/requirements.txt (line 6)) (2.6.1) Requirement already satisfied: pickleshare in /usr/local/lib/python3.9/dist-packages (from ipython->-r yolov3/requirements.txt (line 6)) (0.7.5) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.9/dist-packages (from ipython->-r yolov3/requirements.txt (line 6)) (5.7.1) Requirement already satisfied: prompt-toolkit<2.1.0,>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from ipython->-r yolov3/requirements.txt (line 6)) (2.0.10) Requirement already satisfied: pexpect in /usr/local/lib/python3.9/dist-packages (from ipython->-r yolov3/requirements.txt (line 6)) (4.8.0) Collecting jedi>=0.10 Downloading jedi-0.18.2-py2.py3-none-any.whl (1.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 64.3 MB/s eta 0:00:00 Requirement already satisfied: backcall in /usr/local/lib/python3.9/dist-packages (from ipython->-r yolov3/requirements.txt (line 6)) (0.2.0) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (1.4.4) Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (23.0) Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (3.0.9) Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (1.0.7) Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (4.39.0) Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (2.8.2) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (0.11.0) Requirement already satisfied: importlib-resources>=3.2.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (5.12.0) Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests>=2.23.0->-r yolov3/requirements.txt (line 13)) (2.0.12) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests>=2.23.0->-r yolov3/requirements.txt (line 13)) (2022.12.7) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests>=2.23.0->-r yolov3/requirements.txt (line 13)) (1.26.15) Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests>=2.23.0->-r yolov3/requirements.txt (line 13)) (3.4) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from torch>=1.7.0->-r yolov3/requirements.txt (line 16)) (4.5.0) Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (2.16.2) Requirement already satisfied: protobuf<4,>=3.9.2 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (3.19.6) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (1.4.0) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (0.4.6) Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (0.6.1) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (1.8.1) Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (2.2.3) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (3.4.1) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.9/dist-packages (from tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (1.51.3) Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas>=1.1.4->-r yolov3/requirements.txt (line 27)) (2022.7.1) Collecting smmap<6,>=3.0.1 Downloading smmap-5.0.0-py3-none-any.whl (24 kB) Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (5.3.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.9/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (0.2.8) Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.9/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (1.15.0) Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.9/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (4.9) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.9/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (1.3.1) Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.9/dist-packages (from importlib-resources>=3.2.0->matplotlib>=3.2.2->-r yolov3/requirements.txt (line 7)) (3.15.0) Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.9/dist-packages (from jedi>=0.10->ipython->-r yolov3/requirements.txt (line 6)) (0.8.3) Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.9/dist-packages (from markdown>=2.6.8->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (6.0.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.9/dist-packages (from prompt-toolkit<2.1.0,>=2.0.0->ipython->-r yolov3/requirements.txt (line 6)) (0.2.6) Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.9/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (2.1.2) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.9/dist-packages (from pexpect->ipython->-r yolov3/requirements.txt (line 6)) (0.7.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.9/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (0.4.8) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.9/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.4.1->-r yolov3/requirements.txt (line 22)) (3.2.2) Installing collected packages: smmap, setuptools, jedi, thop, gitdb, gitpython Attempting uninstall: setuptools Found existing installation: setuptools 63.4.3 Uninstalling setuptools-63.4.3: Successfully uninstalled setuptools-63.4.3 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. cvxpy 1.3.0 requires setuptools<=64.0.2, but you have setuptools 67.6.0 which is incompatible. Successfully installed gitdb-4.0.10 gitpython-3.1.31 jedi-0.18.2 setuptools-67.6.0 smmap-5.0.0 thop-0.1.1.post2209072238
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 질문입니다.
지금까지 (28, 28, 1): 그레이스케일 이미지 였다면input_tensor = Input(shape=(28, 28, 3): RGB이미지Conv2d(filters=32, kernersize=(3, 3), strides=1, padding='same', activation='relu')(input_tensor)라면 파라미터수는 (32*3*3):커널을 적용한 피처맵 (3)input데이터 채널수로 계산하는것이 맞나요? 최종: 32*3*3*3 피처맵의 개수는 채널수와 상관없이 같구요 (왜냐하면 필터의 채널수도 3으로 늘어나기 때문에)
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mAP 성능결과에 대한 기준이 궁금합니다.
안녕하세요 선생님. Mask-RCNN 을 이용한 프로젝트를 수행하면서 궁금증이 생겨 질문드립니다. 질문에 대한 답이 상대적이고 주관적일 수 있지만 약간의 기준이라도 얻고싶어 질문 남깁니다. 해당 강의를 통해 mAP가 높은 모델일수록 재현율, 정밀도가 함께 좋은 성능을 보이는 균형잡힌 모델이라고 이해를 하였습니다. 이번에 Mask-RCNN을 학습하여 테스트 데이터셋에 적용하였을 때, IOU 0.5 기준 mAP=60.3, 0.75 기준 mAP=47.4 성능의 모델을 만들었는데, 이와 같은 성능을 두고 해당 모델이 사용하기 적합하다 혹은 추가적인 튜닝이 필요하다와 같은 결론을 내리는 과정에서 어려움이 있습니다. 이에 대한 기준이 절대적이지 않겠지만, mAP에 대하여 통상적으로 사용되는 대략적 기준이 있는지 궁금합니다.추가적으로 Mask-RCNN의 경우 BBox에 대한 성능 외에 Segmentation에 대한 mAP 성능이 나오던데, 이는 Masking의 픽셀에 대해서 IOU를 계산한 것인지 궁금합니다.
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
Functional API 와 Sequential 은 말그대로 입력 방법의 차이인가요?
API 라고 해서 모듈을 불러오는데는 차이가 있는게 아니라 말 그대로 모듈과의 소통하는 방식의 차이를 뜻할뿐인지 그게 궁금합니다.물론 강의 마지막에 말씀하신 것 처럼 인풋을 알 수 있냐 없느냐의 차이도 포함해서요
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 안녕하세요! 질문입니다!
머신러닝 안에 딥러닝이 있다고 할 수 이유는 학습을 하고 원하고자 하는 결과를 얻기 위해 가중치를 업데이트 하는 알고리즘이 있기 때문이고, 딥러닝과 머신러닝의 차이는 딥러닝은 학습된 결과로 다시 한번 학습하는 것(layer를 쌓는 것)과 같이 복잡한 로직을 수행하는 점에 있어서 차이가 있는건가요?머신러닝과 딥러닝의 차이가 정리가 안되서 이렇게 질문을 남겨드립니다.
-
미해결Google 공인! 텐서플로(TensorFlow) 개발자 자격증 취득
슬랙 가입이 안됩니다
슬랙 메일 10월에 받고 슬랙 가입하려고 하는데 계정 생성이 안됩니다.기간이 오래 되서 그런걸까요? 만약 그런거라면다른 메일 주소로 가입 다시 하고 싶습니다.ykvanillasky@gmail.com
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
연쇄법칙의 가운데 세타2는 왜 포함이 되어 있지 않나요...?
안녕하세요 선생님!좋은 강의 잘 듣고 있습니다도중에 궁금한 부분이 생겨 질문드립니다!!!연쇄법칙 중 z(3)은 세타2*a(2)로 보여지는데왜 연쇄법칙의 분모에는 a(2)만 들어 가게 된걸까요...?알고 싶습니다...ㅠㅠ
-
미해결비전공자를 위한 진짜 입문 올인원 개발 부트캠프
콜백 함수 질문
콜백함수에서 첫번째 함수 선언했을때 나중에 그냥 sayHello()로 호출하면안되나요? 굳이 함수를 새로 만들어서 거기 인자에 콜백함수 넣고, 함수이름(sayHello)를 실행시키는 이유가 궁금해요~~
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
CVAT 툴 사용
안녕하세요, 강사님.한줄기 빛처럼 따라가며 강의 잘 듣고있습니다! 정말 감사드립니다.섹션10. Ultralytics Yolo 실습 - 02에서 CVAT 툴을 소개해주셨는데강의 안에서 말씀해주신 cvat.org 페이지는 접속이 불가하던데 혹시 cvat.ai로 바뀐걸까요?
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
안녕하세요 선생님 질문입니다!
강의 내용에서 이터레이션이 1000이고 전체 데이터수가 10만이라면 단순히 연산량으로 봤을 때 10만건의 데이터를 각각 1000번씩 돌려서 웨이트를 업데이트 한다라는 의미가 맞나요?
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
pretrained model 재학습 관련 질문
안녕하세요.tensorflow object detection 공부 중 몇 가지 궁금증이 생겨 질문드립니다. pretrained model을 이용해 "사과"라는 객체를 탐지하는 A모델을 만들었을 경우, 이 A 모델에 추가적으로 "바나나"라는 객체를 학습 시켜, 최종적으로 "사과","바나나"를 탐지하는 A모델을 만들 수 있는지 궁금합니다.만약, 1번이 가능하다면,기존 A모델의 labelmap에 id를 추가하여 "바나나" 입력기존 A모델의 config 파일에 num class를 2로 변경, "바나나" 학습 데이터(tfrecord) 위치로 변경하면 되는 걸까요?만약, 1번이 가능하지 않다면,"사과" tfrecord와 "바나나"tfrecord를 합쳐서 새로운 tfrecord를 만들고pretrained model를 불러와 새로운 B 모델을 만들어야 할까요?
-
미해결YOLO 구현으로 배우는 딥러닝 논문 구현 with TensorFlow 2.0
model.py의 Activation Function
GlobalAveragePooling2D()에서 InceptionV3의 다차원 Feature Map을 1차원 스칼라로 차원변환 해주는데, 여기서 GlobalAveragePooling2D()를 사용하심은, 아래 이미지에서 Flatten된 Vector를 구현 하심이 맞으실까요? 왜 2D 해당 기법은, CNN + FCN을 대체하기위해 사용된다는정도로만 인지하고 있습니다. x = tf.keras.layers.GlobalAveragePooling2D()(x) # Multi dimension featuremap to one dimension scalar value.YOLO Format으로 Flatten 시킬때, 활성화 함수는 지정할 필요가 없나요? 원 논문에서 마지막 Layer에 대해 linear activation function을 사용했는데, 수업에서 사용한 코드에서는 'None'으로 지정된 이유가 어떻게 될까요? output = tf.keras.layers.Dense(cell_size * cell_size * (num_classes + 5 * boxes_per_cell), activation="None")(x) # Yolo 형태에 맞는 Flatten 된 벡터로 변환
-
미해결YOLO 구현으로 배우는 딥러닝 논문 구현 with TensorFlow 2.0
코랩에서 train.py 실행 시 오류
운영환경Colab (프로 GPU 버전 사용)이슈아래 코드 실행 시, InvalidArgumentError` 발생.if __name__ == '__main__': app.run(main)/usr/local/lib/python3.9/dist-packages/tensorflow/python/framework/ops.py in raise_from_not_ok_status(e, name) 7213 def raise_from_not_ok_status(e, name): 7214 e.message += (" name: " + name if name is not None else "") -> 7215 raise core._status_to_exception(e) from None # pylint: disable=protected-access 7216 7217 InvalidArgumentError: {{function_node __wrapped__Squeeze_device_/job:localhost/replica:0/task:0/device:GPU:0}} Can not squeeze dim[1], expected a dimension of 1, got 24 [Op:Squeeze] Q. 운영환경 상, 리눅스 또는 윈도우를 활용하지못하는데 코랩에서 강의에서 주어진 코드 실행 시 문제가 되는 부분이 있나요?