묻고 답해요
158만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
해결됨2주만에 통과하는 알고리즘 코딩테스트 (2024년)
완전탐색(For 반복문) 6분 질문드립니다.
100만 이하의 약수가 존재하는지 확인할 때 반복문을 왜 101만까지 돌리는 건 가요? 저는 입력 받은 수까지 확인을 했었거든요... 이유가 궁금합니다!백만보다 큰지 안 큰지 확인하기 위함인 건 알겠는데 수학적으로 이해가 좀 안 가서 질문을 드립니다.추가적으로 알고리즘을 풀다보면 수학적인 지식이 좀 많이 부족하다고 느끼는데 어떻게 채우는 게 좋을지도 궁금합니다.. 6개월 정도 회사 다니면서 코테에만 집중해서 이직하는 게 현재 목표입니다. 제가 작성한 답안입니다.답 도출까지는 못했습니다.
-
미해결PHP 개발자의 최종 테크트리, 라라벨 강의
기가 막히네..
답글에 답글을 다는 기능이 없네요..시비를 걸다니요.. 애시당초 답변을 잘못 했다는 생각 안하시나요?공부 하고 있는 부분에 대해서 문의를 했는데..그 부분을 삭제 하면 문제가 해결 된다고 말하는 게 맞는 건가요? 무슨 답변이 그런가요?그러면..실무 에서도 그냥 지우면 되는 건가요?영상 끝 부분에 꼭..잘 이해가 안가는 부분이 있으면 문의를 하라고 하던데..문의를 하면 뭐합니까?그 부분을 지우면 해결 된다고 하는데.. 이 부분은 잘 모르겠으니 확인 후 답변 하겠다고 하는게 맞는 것 아닌가요?아니면 좀 더 확인 후 답변을 하던가요.. 답변 좀 잘해 주세요.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
roc_auc에서 DataConversionWarning 발생
체험환경 2유형 학습중에 DataConversionWarning가 발생해서 문의드립니다. 아래와 같이 코드 작성 후에 roc_auc로 성능평가하는 과정에서 워닝이 발생했는데 이유가 무엇인가요?? # print(train.shape, test.shape) # (3500, 11) (2482, 10)# print(train.isnull().sum())# print(test.isnull().sum())train = train.fillna({'환불금액' : train['환불금액'].median()})test = test.fillna({'환불금액' : test['환불금액'].median()})# print(train.isnull().sum().sum())# print(test.isnull().sum().sum())# print(train.info())# print(test.info())# print(train.describe(include='O'))# print(test.describe(include='O'))# print(train.head())target = train.pop('성별')train = train.drop(['회원ID'], axis=1)test_id = test.pop('회원ID')# print(train.shape, test.shape) c_train = train.select_dtypes(exclude='number')n_train = train.select_dtypes(include='number')c_test = test.select_dtypes(exclude='number')n_test = test.select_dtypes(include='number')from sklearn.preprocessing import LabelEncoderfor i in c_train.columns: le = LabelEncoder() c_train[i] = le.fit_transform(c_train[[i]]) c_test[i] = le.transform(c_test[[i]])train = pd.concat([c_train, n_train], axis=1)test = pd.concat([c_test, n_test], axis=1)# print(train.head())# print(train.shape, test.shape)from sklearn.model_selection import train_test_splitx_tr, x_val, y_tr, y_val = train_test_split(train, target, random_state=2024, test_size=0.2, stratify=target)print(x_tr.shape, x_val.shape, y_tr.shape, y_val.shape)from sklearn.ensemble import RandomForestClassifierrfc = RandomForestClassifier(random_state=2024)rfc.fit(x_tr, y_tr)pred1 = rfc.predict_proba(x_val)print(pred1[:,1].shape)print(y_val.shape)from sklearn.metrics import roc_auc_scoreprint(roc_auc_score(y_val, pred1[:,1])) >>프로세스가 시작되었습니다.(입력값을 직접 입력해 주세요)> (2800, 9) (700, 9) (2800,) (700,)(700,)(700,)0.6341283030687979/usr/local/lib/python3.9/dist-packages/sklearn/utils/validation.py:63: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(*args, **kwargs)/usr/local/lib/python3.9/dist-packages/sklearn/utils/validation.py:63: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(*args, **kwargs)/usr/local/lib/python3.9/dist-packages/sklearn/utils/validation.py:63: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(*args, **kwargs)/usr/local/lib/python3.9/dist-packages/sklearn/utils/validation.py:63: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(*args, **kwargs)프로세스가 종료되었습니다.
-
미해결[리뉴얼] 파이썬입문과 크롤링기초 부트캠프 [파이썬, 웹, 데이터 이해 기본까지] (업데이트)
Exercise 20. 데이터 구조 (리스트) 질문
(1) 요청사항사용자로부터 주민등록번호를 입력받아, 성별을 '남성' 또는 '여성'으로 출력하세요.주민등록번호 뒷자리 맨 앞자리는 성별을 나타냄예) 800001-1231231 주민번호를 입력받으면 1을 출력하면 됨1이면 남성, 2이면 여성을 출력하면 됨(2) 입력코드data = input()if data[7] == '1':print ("남성")else:print ("여성")(3) 코드결과800001-1231231남성입력코드에서 data[7]이면 '-'인데, 어떻게 코드 결과가 원활하게 나올 수 있는 걸까요?요청사항을 충족하려면, 아래와 같은 코드를 입력해야 하는 거 아닌가요??(4) 수정코드data1 = input()if data1.split("-")[1][0] == 1:print ("남성")else:print ("여성")예제로 주신 코드가 오류 없이 작동하는 점이 궁금해 질문드립니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
기출4-작업형1 sum, len 관련 질문
기출문제4-작업형1 에서 데이터의 갯수를 구하는 부분에서 강의 답안에는 len 을 사용하셨는데아래와 같이 sum 사용시에는 에러가 나는 이유가 궁금합니다. print(len(df[cond1 & cond2 & cond3])) #6 데이터프레임의 행의 개수print(len(cond1 & cond2 & cond3)) #8807, true/false 경우 모두 포함print(sum(cond1 & cond2 & cond3)) #6 true만 계산print(sum(df[cond1 & cond2 & cond3])) #오류나는 이유???
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
기출문제 3회 작업형1-2 질문드립니다
선생님 코드는 이렇게 했을 때 정답 51이 나오는데요.df.isnull().sum() df = df.dropna() df.isnull().sum() df.iloc[:int(len(df)*0.6)] Q1 = df['f1'].quantile(0.25) print(Q1)제가 이렇게 했을 때는, 답이 55로 나오더라고요.import pandas as pd df = pd.read_csv("../input/big-data-analytics-certification/t1-data1.csv") df = df.dropna().reset_index(drop = True) df.iloc[:int(df.shape[0]*0.6)]['f1'].quantile(0.25) 행 개수를 뽑을때, df.shape[0]으로 할 수 있는 걸로 알고 있는데, 어디가 잘못된걸까요? ㅜdf.shape[0]으로 행개수 뽑고, 0.6곱한뒤 36.6->36으로 하라고 하셔서 round처리 안하고 int했는데 무슨 차이가 나는지 모르겠습니다... 그리고 reset_index를 하고 안하고 답 차이도 나는데, 어느게 좀 더 안전한 방식일까요? ㅜㅜ
-
해결됨혼자 공부하는 머신러닝+딥러닝
여기 빨간 동그라미 친부분
Input 노드랑 뉴런이 같은 말이라고 봐도 되나요?
-
미해결실습으로 배우는 핵심 네트워크 기술
pc1이 destination Mac 어드레스는 어떻게 알 수 있나요?
설명을 듣다보니 목적지의 Mac어드레스를 학습하는? 혹은 알 수 있는 방법은 어떤게 있는지 궁금합니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
분산분석
학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요!질문과 관련된 영상 위치를 알려주면 더 빠르게 답변할 수 있어요먼저 유사한 질문이 있었는지 검색해보세요일원분산 분석에서 독립변수에 문자열 처리와 상관없이 동일한 결과값을 얻었고 이에 ols가 회귀분석에서 말씀해주셨듯이 문자형 변수를 알아서 변환해주는 것으로 이해했습니다. 이원분산분석에서는 문자열 처리에 따라 결과값의 차이가 났는데 그 이유로 문자열로 되어있는 종자 변수는 ols가 알아서 변환을 해주지만 여기서는 특이하게 수치형 자료로 나와있는 비료 변수가 사실은 범주형이기 때문에 ols가 알아서 변환을 하지 못해 문자열 처리를 꼭 처리를 해줘야 하는것으로 이해하면 정확할까요? 거기에 분산분석이 연속형 변수~범주형 변수이기에 분산 분석의 경우 의도적으로 다 C() 처리를 해주는게 깔끔하다고 수업중에 말씀하신것으로 이해하면 될까요?? 감사합니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
모의고사 3 - 작업형 2번 문제
모델 학습 및 예측에서 roc_auc_score 가 1이 나와버려서 뭔가 이상하게 학습을 시킨 것 같은데 괜찮은건가요? 그리고 X_test 를 이용해서 predict 할 때는 타겟값인 TravelInsurance 가 없어야하는 것 아닌가요? 왜 오류가 나는지 모르겠습니다... 아래는 어떤 식으로 전처리되었는지 X_tr과 X_test 입니다!
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
문자열 처리에 관한 질문
학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요!질문과 관련된 영상 위치를 알려주면 더 빠르게 답변할 수 있어요먼저 유사한 질문이 있었는지 검색해보세요 강의 내용 6분 40초와 관련이 있습니다. 제가 2번 문제를 풀다가 Gender 부분을 C(Gender) 처리를 하지 않고 풀었는데 강의를 다시 보다 보니 문자열 처리를 해주는 것을 알았습니다. 근데 문자열 처리 유무와 상관없이 값이 전부 동일한 것을 보고 이렇게 질문을 드립니다. 회귀분석에서 ols가 범주형 변수가 있어도 C() 처리를 안해줘도 된다고 하셨는데 로지스틱 회귀 분석에서도 동일한지 여쭤보고 싶습니다. 왜 결과값이 문자열 처리에 상관없이 동일하게 나오는 건가요? 감사합니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
작업형 모의고사 1문제_drop
이 부분은 왜 해주나요??왜 해야하나요?pop이 의미하는 바가 뭔지 설명해주세요,
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
작업형 모의고사 1문제_삭제
cols을 train데이터 안에 object만 모은 데이테인데, test데이터는 cols로 모은적이 없는데,, 저렇게 cols 로 작성해서 삭제해도 되는 건가요?
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
섹션 5 - 작업형2 모의문제 3 질문
안녕하세요, 학습 중 질문이 있어 글 작성합니다.코드를 정확하게 이해하고자 자세하게 여쭤보겠습니다.1. 강의 9:20 경 코드from sklearn.model_selection import train_test_split X_tr, X_val, y_tr, y_val = train_test_split(train.drop('output', axis=1), train['output'], test_size=0.15, random_state=2022) # 랜덤 포레스트 from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier() rf.fit(X_tr, y_tr) pred = rf.predict(X_val)rf.fit에는 당연히 X, y의 train 데이터가 들어가야 하겠는데.pred에 X_val이 들어가야 하는 이유는 무엇인가요? 2. 강의 22:10 경 코드pred_proba = xgb.predict_proba(test)pd.DataFrame({ 'id' : test_id, 'output' : pred_proba[:, 1]}).to_csv('0000.csv', index=False)roc_auc_score에서 pred가 아닌 pred_proba를 사용함은 이해를 했으며(output이 확률이니까),pred_proba[:, 1] 에서 :1의 의미를 알고싶습니다.답변주심에 미리감사드립니다!
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
작업형 2유형 질문있습니다!
일단 공부방법을 결과물 도출로 중심을 잡고 코딩하느라 전처리나 기본 인코딩, 스케일링만 진행해서 수행하는데 분류 문제시 정확도를 출력해보면 50퍼 근처로 출력되는데 감점요인이나 점수 획득에 문제가 있을까요??
-
미해결김영한의 실전 자바 - 기본편
인스턴스 메서드와 클래스 메서드
학습하는 분들께 도움이 되고, 더 좋은 답변을 드릴 수 있도록 질문전에 다음을 꼭 확인해주세요.1. 강의 내용과 관련된 질문을 남겨주세요.2. 인프런의 질문 게시판과 자주 하는 질문(링크)을 먼저 확인해주세요.(자주 하는 질문 링크: https://bit.ly/3fX6ygx)3. 질문 잘하기 메뉴얼(링크)을 먼저 읽어주세요.(질문 잘하기 메뉴얼 링크: https://bit.ly/2UfeqCG)질문 시에는 위 내용은 삭제하고 다음 내용을 남겨주세요.=========================================[질문 템플릿]1. 강의 내용과 관련된 질문인가요? (예/아니오)2. 인프런의 질문 게시판과 자주 하는 질문에 없는 내용인가요? (예/아니오)3. 질문 잘하기 메뉴얼을 읽어보셨나요? (예/아니오)[질문 내용]클래스 메서드와 인스턴스 메서드 모두 메서드 영역에 존재한다고 하셨는데, 클래스 메서드는 인스턴스 생성 없이도 사용 가능하지만 인스턴스 메서드는 인스턴스 생성 없이는 사용이 불가능한 걸로 이해했습니다. 그럼 Java 내부적으로 같은 메서드 영역에 속한 클래스 메서드와 인스턴스 메서드를 어떻게 구분하여 클래스 메서드는 사용 가능하도록, 인스턴스 메서드는 사용 불가능하도록 처리하는 것인가요?
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
캐글 작업형 1-6 결측치 제거
f1 컬럼의 결측치 제거 부분에서 df = df[~df['f1'].isnull()]을 사용하셨는데 이 부분이 잘 이해가 안됩니다 ㅜ 간단하게 설명해주실 수 있을까요?혹시 dropna를 사용해서 결측치만 제거를 할 수 있는 방법도 있을까요?
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
7회 기출유형(작업형2) 강의 질문
RMSE 구할 때,mean_squared_error(y_valid, pred, squared=False) squared=False 작성하면 출력되던데 시험장에서 이렇게 작성해도 될까요?
-
미해결김영한의 실전 자바 - 중급 1편
내부클래스는 중첩클래스에 속하는것 아닌가요?
[질문 템플릿]1. 강의 내용과 관련된 질문인가요? (예)2. 인프런의 질문 게시판과 자주 하는 질문에 없는 내용인가요? (예)3. 질문 잘하기 메뉴얼을 읽어보셨나요? (예)[질문 내용][섹션 7-4 내부클래스] 에서 마지막 정리 부분에서 설명해 주신 "중첩이라는 단어와 내부라는 단어의 의미의 차이" 에서 중첩 을 어떤 다른 것이 내부에 위치하거나 포함되는 구조적 관계, 나의 안에 있지만 내것이 아닌 것을 말한다.중첩(Nested)은 나의 안에 있지만 내것이 아닌것을 말한다. 단순히 위치만 안에 있는 것이다. 반면에 여기서 의미하는 내부(Inner)는 나의 내부에서 나를 구성하는 요소를 말한다.라고 말씀하셨는데 이부분이 좀 햇갈려서요! 앞서 [섹션 7-1 중첩 클래스, 내부 클래스란?] 강의 파트 에서 가장 처음 설명해 주셨을 때 중첩클래스는 4가지 종류가 있으며 그 안에는 내부 클래스도 포함되어있다 라고 말씀하셨는데해당 파트의 강의 중간에 중첩과 내부라는 단어에 차이가 있다고 하셔서요.그렇다면 사실 "내것이 아닌것" 이라는 의미는 단순한 중첩인 순수 nested가 아니라 정적 중첩 즉, static nested에 해당하는것 아닌가요!?제가 잘못 이해하고 있다면... 처음에 중첩 안에 4가지 종류중 내부 클래스는 제외되어야 하는거 아닌가? 생각이 들었습니다. 중첩 클래스는 클래스를 정의하는 위치에 따라 여러가지 분류가 있다. 총 4가지가 있으며, 크게 2가지로 분류된다. - 중첩 클래스 분류 1. Static 정적 중첩 클래스 2. Non-Static 내부 클래스 1. inner 내부 클래스 2. local 지역 클래스 3. annonymous 익명 클래스 중첩 클래스를 정의하는 위치는 변수의 선언 위치와 같다.이렇게 교안으로도 함께 설명해주셨던 정의가 틀린것이 아닌가 해서요..죄송하지만 계속 햇갈려서 정확히 해 둬야 할거 같아요! 명쾌한 답변부탁드립니다 ^^(바쁘시더라도 강의를 직접 찍으신 영한형님께서 직접 답변 부탁드려요.. AI는 가끔제 질문의 요지를 잘 못알아먹고 오해를 불러일으키니..)
-
미해결쉽고 빠르게 익히는 Power BI 심화 1 (시각화와 파워 쿼리)
버튼, URL 등을 활용한 Direct 파일실행법 문의
선생님 오랜만에 인사드립니다.아래의 Power BI _ Table 객체를 생성하는데 데이터 원본은 별도 구매정보를 정리해놓은 엑셀 Sheet에서 가져왔고요.. Po No 열의 행을 클릭하면 회사 ERP System의 PO Sheet(발주서)가 바로 실행되게 하고 제품설명서 열의 행을 클릭하면 내 PC에 저장되어있는 제품 카달로그.pdf가 실행되게 설정하려면 어떻게 해야되나요?