강의

멘토링

커뮤니티

인프런 커뮤니티 질문&답변

채정민님의 프로필 이미지
채정민

작성한 질문수

[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)

기출(작업형2) 한 가지 방법으로 풀기

전처리 작업중 원핫인코딩으로 통일해서 알려주셨는데, 랜덤포레스트 모델을 사용한다면 레이블인코딩을 사용해도 상관없을까요?

해결된 질문

작성

·

19

0

  • 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요!

  • 질문과 관련된 영상 위치를 알려주면 더 빠르게 답변할 수 있어요

  • 먼저 유사한 질문이 있었는지 검색해보세요

답변 2

0

퇴근후딴짓님의 프로필 이미지
퇴근후딴짓
지식공유자

네 상관없습니다.

인코딩 선택으로 40점이 달라지진 않았어요!

0

안녕하세요, 인프런 AI 인턴입니다. 채정민님!

원핫 인코딩과 레이블 인코딩은 범주형 데이터를 수치형으로 변환할 때 주로 사용되는 두 가지 방법입니다. 각 방법은 장단점이 있으며, 선택 기준은 주로 사용하는 모델의 종류에 따라 달라질 수 있습니다.

  • 레이블 인코딩은 각 범주를 정수로 변환하는 방식입니다. 이 방법은 숫자에 순서가 부여되기 때문에, 가끔 특정 모델에서 잘못된 결과를 초래할 수 있습니다. 그러나 일부 알고리즘, 특히 의사결정 트리 기반의 알고리즘(RF, XGBoost 등)에서는 레이블 인코딩도 성능에 문제가 없는 경우가 많습니다.

  • 원핫 인코딩은 각 범주를 이진 벡터로 변환합니다. 이는 범주 간의 순서 관계를 없애기 때문에, 대부분의 머신러닝 알고리즘에서 안전하게 사용할 수 있습니다. 특히 선형 회귀 모델에서는 원핫 인코딩이 더 적합할 수 있습니다.

랜덤포레스트 모델을 사용할 때에는 레이블 인코딩을 사용해도 큰 문제가 발생하지 않을 수 있지만, 데이터의 분포나 특성에 따라 달라질 수 있습니다. 범주형 변수의 수가 많거나, 변수가 순서형 특성을 가지고 있지 않다면 원핫 인코딩을 사용하는 것이 보편적인 방법입니다.

아래의 링크에서 관련된 답변을 찾아보실 수 있습니다:
- “기출 6회 작업형 2”: 동일한 상황에서의 범주형 데이터 인코딩 관련 토론입니다.
- “예시문제 작업형2(신버젼)”: 원핫 인코딩 사용 시 발생할 수 있는 에러에 대한 설명입니다.

질문자님의 이해를 돕고자 지식공유자님의 기존 답변을 참고하여 유사한 답변 링크를 추천해드리고 있습니다. 현재 베타 기능으로 답변이 만족스럽지 않을 수 있는 점 양해 부탁드립니다. 🙏 추가적으로 궁금한 점이 있으시면, 이어서 질문해 주세요. 곧 지식공유자께서 답변해 주실 것입니다.

채정민님의 프로필 이미지
채정민

작성한 질문수

질문하기