
파이썬 데이터시각화 분석 실전 프로젝트
노마드크리에이터
보스톤 마라톤 빅 데이터를 파이썬을 이용하여 원하는 형태로 가공하여 다양한 차트와 기술을 이용하여 가치있는 정보로 만드는 머신러닝, 딥러닝 프로젝트 준비 과정입니다.
Basic
Python, Pandas
It goes without saying that AI artificial intelligence is the trend. But what can you use machine learning and deep learning for? Now, let's learn useful Internet of Things IoT Computer Vision projects that are used in daily life.
Computer Vision Image, Video Processing
Understanding and practicing computer vision dnn(deep learning)
Implementing Deep Learning Functions on Raspberry Pi IoT Devices
Object Detection in Images and Videos
Object Recognition in Images and Videos
Various Computer Vision techniques such as YOLO and Harr
Face Recognition in Images and Videos
Text Recognition in Images and Videos
Internet of Things and Deep Learning in the field of Computer Vision
Learn how to use it and see examples.
machine learning, deep learning
Now it's real!
Computer Vision, a hot field in artificial intelligence, was born as a practical project with the Internet of Things (IoT) and Raspberry Pi .
Develop your ability to leverage it!
While it's important to build a solid theoretical foundation while learning and teaching artificial intelligence, machine learning, and deep learning, I also believe it's important to develop practical skills.
So, we prepared a project that utilizes Internet of Things (IoT) devices in the field of Computer Vision, a representative field that uses artificial intelligence, machine learning, and deep learning.
The course is structured so that you can learn the theory step by step while completing interesting tasks. Upon completion, you'll be inspired to pursue a variety of computer vision deep learning projects and businesses. It's also been a great help in preparing for my current project.
While creating this course, I developed various contents that were not included in the course, such as 'counting the number of entrants', 'counting the number and speed of vehicles', 'identifying age and gender by looking at faces', and 'receipt and business card recognition' , and dreamed of follow-up courses such as 'Machine Learning, Deep Learning Computer Vision Comprehensive Course', 'Mobile Deep Learning Computer Vision Practical Project', and 'Robot IoT Deep Learning Practical Project' .
Project Introduction
Let's implement a function to recognize directly written numbers using deep learning technology using a Raspberry Pi, a web camera, and OpenCV .
Deep learning can be used to detect various objects (object recognition). YOLO and its friends count the number of parked cars in an image. Count the numbers and save them to a cloud server in real time.
The latest Computer Vision technology recognizes letters and numbers in images and videos (Text Recognition). Let's try a fun project that uses a camera to recognize vehicle license plates.
Now, let's identify faces and eyes (face and eye detection) in images and videos. Then, we'll use deep learning to detect movement. We'll check for drowsiness through real-time video and, if so, wake you up with an alarm.
You can create an access control system that not only recognizes faces but also confirms movements.
When a registered person enters, we'll notify you via the server, Dropbox, or email. If an unregistered person enters, we'll sound an alarm.
1. 'Model accuracy over 99%' We also offer a special lecture titled 'Raising the bar'. This lecture is titled ' [ Raspberry Pi ] IoT Deep Learning Computer Vision Practical'. The project began with a question from students in the MNIST handwriting model: "Why can't the MNIST handwriting model say '7' is '7'?" While the model's accuracy is a factor, as are the program's exception handling and the raw MNIST data, the existing Nueral Network model was too simple for training purposes, so I reconfigured it to increase its accuracy to 99.38%.
2. This special lecture will teach you how to create your desired model using TensorFlow and Keras. Using the same images used for YOLO training, you'll train a model with Keras and use it to identify objects. You'll also learn how to train YOLO and Keras, and compare them.
What tools do you use?
What tools will be covered in this course? This course is based on OpenCV, a leading computer vision software library, Python, and TensorFlow.
We'll also use the Raspberry Pi, a leading IoT platform. In addition, we'll install several useful software programs, which we'll explain one by one in this lecture.
1. Raspberry Pi board (B+ recommended), PiCamera
Related lectures
bonus!!
Provide additional information on this!
As a bonus, in the lecture 'Python Raspberry Pi IoT Project - Remote Monitoring Car', you will learn about Raspberry Pi and
In the lecture 'Complete Mastery of Angular Firebase - PetStore Shopping Mall Project', lectures on Firebase are provided in a special lecture format .
Q. What are the features of this course?
A. I thought about how to apply deep learning and machine learning in practice.
This course covers not only the theoretical foundations of Computer Vision, a representative field, but also teaches deep learning through practical projects. Specifically, it uses the Raspberry Pi to help students create practical projects that can be applied in the field, enabling them to leverage their skills in the future.
Q. Can non-majors also take the course?
A. Deep learning and data science aren't necessarily fields exclusive to those with a computer science degree. If you have the passion, you can learn and apply them.
Who is this course right for?
Those who want to use deep learning in practice
Anyone who wants to implement deep learning in Internet of Things (IoT) devices
Anyone who wants to learn about image processing using deep learning
Anyone preparing a project related to Computer Vision
Those who want to learn the latest deep learning image processing techniques
Anyone who wants example code to use in their Computer Vision projects
Need to know before starting?
Willingness to study hard
Python Basics - Python 100-minute core lecture
Python data processing and visualization - Python data visualization
[Tensorflow2] Complete conquest of Python machine learning - Marathon record
[Tensorflow2] Complete conquest of Python deep learning - Latest techniques of GAN, BERT, RNN, CNN
[OpenCV] Python Deep Learning Image Processing Project - Find Son Heung-min!
22,070
Learners
458
Reviews
556
Answers
4.4
Rating
25
Courses
대한민국과 NVIDIA가 인정한 딥테크, 싱가포르가 선택한 핀테크 스타트업, 글로벌 무대에서 당신의 가능성을 실현합니다.
노마드크리에이터는 개인의 성장을 넘어, 스타트업으로 도약하며 전 세계를 무대로 전문적인 IT 강의를 제공하고 있습니다.
2019년, 싱가포르 정부의 Entrepass Innovator 프로그램을 통해 시작된 우리의 여정은 곧 혁신적인 스타트업의 이야기로 확장되었습니다.
2020년에는 대한민국에서 인공지능 핀테크 솔루션을 개발하며 딥테크 분야의 선두주자로 자리매김했고, NVIDIA 협업 프로그램 최우수 프로젝트와 ASUS Global Startup Challenge Award를 포함한 다양한 글로벌 인정과 성과를 이뤘습니다.
2023년에는 NVIDIA의 지원으로 미국에 회사를 설립하며 글로벌 시장을 향한 도약을 시작했습니다.
스타트업 창업 이전, LG CNS와 티머니 등에서 25년간 System Engineer, Project Manager, IT Consultant로서 글로벌 프로젝트를 이끌며 실전 경험과 전문성을 쌓았습니다.
PMP, SAP BW, SCJP, MCSE+DBA, OCP-DBA와 같은 전문 자격을 기반으로, 프로그램 개발, 프로젝트 관리, IT 솔루션 설계 등 다양한 분야에서 성공적인 도전을 이어왔습니다.
이제, 노마드크리에이터는 이러한 경험과 노하우를 집약하여 누구나 쉽고 재미있게 배울 수 있는 교육 콘텐츠를 제공합니다. 실무 중심의 강의부터 최신 기술 트렌드를 반영한 전문 과정까지, 개인의 성장을 위한 맞춤형 학습을 제안합니다.
기술과 교육의 융합으로 더 많은 사람들이 자신만의 가능성을 실현하도록 돕습니다.
노마드크리에이터와 함께라면, 당신의 꿈은 더 이상 멀리 있지 않습니다.
지금 이 순간에도 누군가는 새로운 것을 배우고, 더 나은 자신이 되기 위해 노력하고 있습니다.
하지만 정보의 홍수 속에서 필요한 지식을 찾는 데 소중한 시간을 잃는 일이 얼마나 많습니까?
노마드크리에이터는 이 문제를 해결하고자 합니다.
우리는 지식을 창의적으로 엮어내어, 시간을 아끼고, 가치를 극대화하는 경험을 제공합니다. 우리의 목표는 단순한 정보 전달을 넘어, 지식을 작품처럼 아름답게 전달하는 것입니다.
노마드크리에이터와 함께라면, 당신의 배움은 더 쉽고, 빠르며, 가치 있는 결과를 만들어낼 것입니다.
"배움의 여정에 가치를 더하다, 노마드크리에이터."
이것이 우리가 꿈꾸는 미래입니다.
All
60 lectures ∙ (10hr 49min)
All
38 reviews
4.4
38 reviews
Reviews 1
∙
Average Rating 5.0
Reviews 4
∙
Average Rating 5.0
Reviews 4
∙
Average Rating 4.0
Reviews 3
∙
Average Rating 5.0
Reviews 4
∙
Average Rating 5.0
$77.00
Check out other courses by the instructor!
Explore other courses in the same field!