강의

멘토링

로드맵

Inflearn brand logo image
Data Science

/

Data Analysis

[PL 0302] Python for Data Manipulation - NumPy Masterclass

This is a lecture on how to use NumPy and practice its application in real-world scenarios.

(5.0) 4 reviews

92 learners

  • asdfghjkl13551941
이론 중심
시리즈
데이터전처리
Numpy
Python
AI

What you will learn!

  • NumPy

  • Data processing

  • Data operation

NOTICE

This lecture is part of the pre-semester (preparatory semester before this semester) of the artificial intelligence specialized curriculum All about AI.

Data processing libraries: NumPy, Matplotlib, Pandas
This lecture covers the most core NumPy .

Miro Link: https://miro.com/app/board/uXjVNJ8PZSs=/?share_link_id=801072444784

For an introduction to All About AI, please refer to the orientation lecture.

NumPy, the core of data operations using Python!

NumPy is an abbreviation for Numerical Python and is a library specialized in operating on vectors, matrices, and higher-order tensors .

This NumPy is an essential technology for anyone who handles data using Python, and because it is the most universally used, it is a library that will serve you well once you learn it .

In the future, we will be implementing machine learning and deep learning algorithms directly using NumPy, so this is a library that you must learn properly before learning them in earnest.

The versatility of NumPy!

NumPy is quite compatible with other libraries that deal with data.

Therefore, once you learn NumPy properly , you can lower the barrier to entry when using other libraries.

A lecture covering the core of NumPy!

Most lectures or textbooks that cover NumPy

np.sum, np.hstack, np.histogram

We focus only on how to use APIs such as .


But! What is definitely more important when using NumPy is

Broadcasting, Fancy Indexing, Vectorization

This is to create fast code using the ndarray object provided by NumPy.


Therefore, in this lecture, we will cover not only the essential APIs provided by NumPy, but also a considerable number of fundamental techniques that can help you use NumPy more efficiently .

This will make you one of the most fundamentally sound people when it comes to writing code to process data.

196 APIs to learn in class

In this lecture, you will learn how to use the essential APIs provided by NumPy, as follows:

Chapter.2

np.array np.zeros np.ones np.empty np.full np.zeros_like np.ones_like np.empty_like np.full_like np.arange np.linspace

Chapter.3

np.positive np.negative np.add np.subtract np.multiply np.power np.divide np.floor_divide np.remainder

Chapter.4

np.equal np.not_equal np.greater np.greater_equal np.less np.less_equal np.logical_not np.logical_and np.logical_or np.logical_xor np. all np. any np.isclose np.allclose

Chapter.6

np.square np.reciprocal np.sqrt np.cbrt np.exp np.exp2 np.expm1 np.log np.log2 np.log10


np.log1p np.deg2rad np.radians np.rad2deg np.degrees np. sin np. cos np. tan np. sinh np. cosh


np. tanh np.sign np.absolute np.trunc np. floor np. ceil np.round ndarray.round np.clip ndarray.clip

Chapter.10

ndarray.copy ndarray.view ndarray.flatten ndarray.flat numpy.ravel ndarray.ravel np.reshape ndarray.reshape np.resize ndarray.resize

Chapter.11

np.squeeze ndarray.squeeze np.expand_dims np.newaxis np.moveaxis np.swapaxes np.transpose ndarray.transpose np.arcsin np.arccos np.arctan


np.sinh np.cosh np.tanh np.sign np. abs np.floor np.ceil np.clip np. round np.trunc np.fix

Chapter.12

np.random.rand np.random.random np.random.uniform np.random.randint np.random.randn np.random.normal np.random.choice np.random.permutation np.random.shuffle np.random.seed


np.random.default_rng rng.random rng.uniform rng.integers rng.standard_normal rng.normal rng.permutation rng.choice rng.shuffle

Chapter.13

np. sum ndarray.sum np.prod ndarray.prod np.mean ndarray.mean np.var ndarray.var np.std ndarray.std


np.max ndarray.max np.min ndarray.min np.median np.percentile np.maximum np.minimum np.memdian np.histogram


np.cumsum ndarray.cumsum np.cumprod ndarray.cumprod np.ptp ndarray.ptp np.diff

Chapter.14

np.sort ndarray.sort np.argsort ndarray.argsort np.argmax ndarray.argmax np.argmin ndarray.argmin np.nonzero ndarray.nonzero np.where np.unique

Chapter 15

np.hstack np.vstack np.concatenate np.append np.hsplit np.vsplit np.split np.partition ndarray.partition np.argpartition ndarray.argpartition

Chapter.16

np.repeat ndarray.repeat np.tile np.meshgrid

Chapter.17

np.linalg.norm np.dot ndarray.dot np.cross np.outer np.identity np.eye np.diag np.trace


ndarray.trace ndarray.transpose ndarray.T np.matmul np.linalg.det np.linalg.inv np.linalg.eig

Chapter.18

ndarray.dtype np.intX np.uintX np.floatX ndarray.itemsize ndarray.nbytes ndarray.astype

Chapter.19

np.save np.load np.savez np.savez_compressed


And in the following chapters, you will learn the fundamental usage of ndarray .

Chapter.5 - Broadcasting

Chapter.7 - Integer Indexing

Chapter.8 - Boolean Indexing

Chapter.9 - Slicing on ndarrays

Chapter.20 - Vectorization Techniques

Practical Practices!

In this lecture, we will review NumPy's API, ndarray technologies, and write code that is actually used in machine learning and deep learning.

Outer

In the future, we will implement various algorithms based on what we learned in this lecture.

I hope this will be an opportunity to solidify my knowledge of NumPy in order to create interesting algorithms in the future.

Recommended for
these people

Who is this course right for?

  • For those who want to learn NumPy properly.

  • Someone who does data analysis

  • People who are learning machine learning and deep learning

Need to know before starting?

  • Basic Python Syntax

Hello
This is

2,947

Learners

117

Reviews

81

Answers

5.0

Rating

13

Courses

강의 이력

  • [멋쟁이 사자처럼] 인공지능중고급과정

  • [국립기상과학원] 2022년, 2023년, 2025년 기상 AI 부스트캠프

  • [삼성전기] 신입SW과정 전문반

  • [국가과학기술인력개발원] R&D 수행 역량 강화 장기 멘토링

  • [국가과학기술인력개발원] R&D 전문과정 이러닝 컨텐츠 제작

  • [국가과학기술인력개발원] 박사후연구원 연구 데이터 시각화 과정

  • [원광대학교] 원광대학교 AI 집체교육 및 AI 장단기과정

  • [한국지능정보사회진흥원] SW여성인재 교육

  • [SK m&service] 데이터 기반 의사결정

  • [한국IT비즈니스진흥협회] ICT COG Academy

  • [서울시 교육청] 신기술분야 연수

     

  • [KT] KT AI 역량향상 과정

  • [K-ICT] 데이터 안심구역 분석캠프

  • [경기도경제과학진흥원] 처음으로 배우는 비전 AI

  • [경기도경제과학진흥원] 파이썬 데이터 분석 입문

  • [서울과학기술원] AI 활용 심화교육

  • [서울대학교] AI 활용 역량강화 교육

  • [HD한국조선해양] AIC AI 연구직 역량 평가 개발

  • [멀티캠퍼스] 원리부터 구현까지, 머신러닝 핵심 알고리즘 마스터

     

     

     

 

  • [패스트캠퍼스] 수학적으로 접근하는 딥러닝

  • [패스트캠퍼스] 한 번에 끝내는 머신러닝과 데이터분석 A-Z

  • [패스트캠퍼스] 바이트 디그리 Lv.2 Deep Learning Essentials

  • [패스트캠퍼스] 딥러닝인공지능 초격차

  • [패스트캠퍼스] 컴퓨터 공학 초격차 VER.2

     

Curriculum

All

192 lectures ∙ (35hr 9min)

Course Materials:

Lecture resources
Published: 
Last updated: 

Reviews

All

4 reviews

5.0

4 reviews

  • HeeSeok Jeong님의 프로필 이미지
    HeeSeok Jeong

    Reviews 9

    Average Rating 4.1

    5

    8% enrolled

    파이토치를 배우기 위한 밑거름 강의... 최고입니다. 신경식 강사님의 강의는 언제나 옳다 !!!

    • 공대형아(신경식)
      Instructor

      감사합니다!! 더 좋은 컨텐츠의 강의 제공할 수 있도록 최선을 다하겠습니다😃

  • 권승님의 프로필 이미지
    권승

    Reviews 2

    Average Rating 5.0

    5

    30% enrolled

    • ysyang1009님의 프로필 이미지
      ysyang1009

      Reviews 13

      Average Rating 5.0

      5

      24% enrolled

      • 유준모님의 프로필 이미지
        유준모

        Reviews 2

        Average Rating 5.0

        5

        30% enrolled

        $35.20

        asdfghjkl13551941's other courses

        Check out other courses by the instructor!

        Similar courses

        Explore other courses in the same field!