강의

멘토링

로드맵

BEST
Data Science

/

Data Analysis

[Renewed] First-time Python Data Analysis (Easy! Learn the entire process of preprocessing, pandas, and visualization) [Data Analysis/Science Part1]

This course aims to teach data analysis beginners fundamental skills for the entire Python data analysis workflow. As an e-commerce planner and developer leveraging real-world data analysis, I crafted this for easy acquisition and immediate application of the full Python data analysis process.

(4.9) 322 reviews

4,108 learners

  • funcoding
Python
Pandas

Reviews from Early Learners

What you will learn!

  • pandas usage

  • Data Analysis Basics

  • Python Data Preprocessing

  • Latest data visualization

  • plotly visualization library

  • Various data formats and data collection

The official lecture chosen by Nekarakubae as an in-house lecture!
Build a foundation for Python data analysis
Highly complete lecture

This course is a course to learn Python data analysis techniques . It is designed to help you learn data preprocessing, data processing through the pandas library, and the most useful latest visualization library (plotly) . It is a special course that was created with the students’ perspective in mind as much as possible, based on the experience of 80,000 lecturers over 8 years, while working in parallel with the field, and provides additional detailed materials along with the course.

This course is currently being used as an official in-house Python data analysis training course by one of the actual Nekarakubae companies.

This course is a newly renewed course for 2025, reflecting existing feedback.

How do I build a foundation in data science and data analysis?

Experience the entire process of data collection, preprocessing, and analysis (SQL/NoSQL + Python). If you want professional analysis skills, learn the Python-based technology in this course. If you are aiming to be a data analyst or scientist, we provide a roadmap that allows you to learn step by step from the beginning. (See the data analysis/science roadmap below)

We have created a video that explains in detail the entire data-related career and analysis/science process. Through this video, you can learn the data process efficiently by yourself according to your goals.

I want to try my hand at real data analysis as soon as possible!

Everyone already has basic knowledge of data analysis. You only need to know the average. The key is to quickly learn the skills to perform the entire data analysis process with Python.

From various data preprocessing to data analysis using real data
We've rounded up all the key skills for professional data analytics.

Python data analysis is not a simple skill that can be mastered in one go. In order to gain skills, you need to 'get used to it', and this is more effective when you approach similar concepts from various angles and learn various application examples. For this, I will introduce the following book that I wrote that will be helpful to refer to along with this online lecture . By utilizing both media, you can become familiar with Python data analysis techniques in a shorter period of time.

Python data analysis can be very awkward at first. If you learn how to use related tools and see the real-time code execution process through online lectures, you can effectively learn the actual work methods and difficult concepts.

After easily building the basics through online lectures, you can become more familiar with the concepts and grammar by accessing other explanations and additional examples of similar grammar through books. Through this, you can develop the ability to apply Python data analysis techniques to various data.

Introduction to Python Data Analysis by Coding Self-study Residual Fun Coding

코딩 자율학습 잔재미코딩의 파이썬 데이터 분석 입문

There are many data analysis lectures, and even after taking various lectures, I still don't know!

The data field is a combination of various theories and technologies. Therefore, it is important to learn systematically . Rather than a lecture that assumes that you know all the related theories and immediately analyzes data and applies fancy machine learning and AI technologies, a lecture that allows you to learn the theories and technologies that you need to learn one by one and practice them to build them up is more helpful.

Based on actual data analysis and domain experience from the field of Nekarakubae
A lecture that systematically and step by step explains all the techniques from a beginner's perspective

I even want to participate in the kaggle competition

Kaggle competitions mainly use machine learning and AI to predict data. To learn these technologies, you must first become familiar with data analysis technologies such as pandas. This lecture covers pandas and visualization technologies, and is structured to learn machine learning and deep learning (AI) technologies step by step through a systematic roadmap. (See roadmap below)

What skills do you need for data analysis?

In the field, SQL and pandas are mainly used to analyze data. Professional data analysis requires data preprocessing, analysis, and visualization skills. For this, you can learn pandas and plotly. This course covers all the core skills required for professional data analysis with Python in the field.

How can I effectively learn data analysis skills?

Pandas has a high barrier to entry with its non-intuitive syntax and extensive functionality, requiring a lot of practice. This course is structured with this in mind:

  1. Part 1: Convert massive daily data to monthly data and learn pandas basics and preprocessing functions.
  2. Second half: Applying EDA analysis, data analysis, and visualization (plotly) techniques to real e-commerce data

It is designed to help you become familiar with pandas and plotly in a short period of time and master the entire process of Python data analysis.

I heard that data analysis requires a good understanding of the actual business domain?

However, it is difficult to listen to a lecture that requires you to first understand various fields that you are not interested in. Try analyzing the e-commerce data covered in this lecture. Even if you do not necessarily use the term “untact era,” all businesses have been moving online in recent years. To understand online business, try understanding the most important e-commerce data. Both understanding the most helpful domain and related technologies are very helpful.

With core e-commerce data and field experience in the business domain
Get a feel for data analysis and business domains !

Even if I watch the lecture, there are no materials, so do I need to buy the book as well?

We provide a concise explanation that goes beyond the limits of the book, along with actual code that you can run right away. If you watch the lecture and run the material together, it's easy to review! You can also refer to it right away whenever you need it later. (I have a lot of attachment to the material. It's a better material than the book, and the material alone makes it worth the tuition fee .)

Now, 90,000 people have verified it online and offline for 9 years.
Well-organized data and clear explanations
We provide better online IT courses!
If you learn well, you will change!

Shouldn't Python visualization require learning matplotlib?

Matplotlib is a traditional but limited data visualization technology that focuses mainly on generating static graphs. On the other hand, the latest technology, plotly, focuses on generating interactive graphs that users can interact with. It also has the advantages of excellent visual quality, web environment suitability, and more diverse graph support . So plotly is becoming more mainstream in the field. So, this lecture explains the plotly technology that is becoming mainstream as a visualization technology .

plotly (dynamic graph support) VS matplotlib (static graph focus)

This is a helpful lecture even for those who have taken a data analysis course!

In order to make Python data analysis technology your own, you need a variety of practical exercises. This course will conduct data analysis from start to finish with various practical examples (Corona data preprocessing, e-commerce data analysis). Through this, you can improve your proficiency in related technologies and organize the knowledge you have missed.

Don't waste your time!
It's not that we can't do something because we don't have the information!
Learn with proven lectures!
This course has been improved upon through countless feedback over the years and was created after much thought and consideration due to my love for online lectures.

So that you can feel, 'Ah! It's really different!'
This is a lecture that is created through constant thinking and improvement.

Be reasonable and considerate of each other
Only those who can form good relationships
Please take the class!

An example of data preprocessing created by processing actual raw data in a data lecture
Corona data is the most helpful example of actual pandas basic functions and preprocessing examples . Therefore, we have created the following graph for the entire period when Corona was most active, and have organized it to firmly learn the related technology.

Daily confirmed cases of coronavirus by country (including the entire period of tracking confirmed cases during the coronavirus period)

Created at the report level for actual field data analysis, including field know-how!
Just drawing a graph is not enough. In the field, details are important.

Analysis of various graphs and various aspects


Learning systematically
The Roadmap of Dave Lee's Residual Fun Coding 🔑

Developer, Data Analyst, and Data Scientist Career Roadmap!

From web/app development to data analysis and AI, we provide an A to Z roadmap that allows you to build a solid foundation in a short period of time. IT technologies are closely linked to each other, so they must be integrated to enable web/app services or data science. By gradually increasing the difficulty and mastering core technologies, you can learn efficiently and understand the system and data in general, and grow into a competitive developer or data expert. To this end, we have prepared a roadmap that systematically organizes core technologies in each field.

1. The fastest data-to-process roadmap

I have created a video that explains in detail about this roadmap and the entire data analysis/science process. If you refer to the video, you can easily learn the data process without trial and error in a short period of time on your own !

Wait! ✋
Click on the roadmap below for more details. If you purchase the roadmaps all at once, they are available at a discounted price! (The discount will be reduced soon.)

2. The fastest full-stack roadmap

I have created a video that explains in detail the roadmap and the fastest way to learn and implement web/app development on your own. If you refer to this video, you can implement web/app without trial and error in a short period of time.

Wait! ✋
Click on the roadmap below for more details. If you purchase the roadmaps all at once, they are available at a discounted price! (The discount will be reduced soon.)

3. Core computer science (CS) knowledge essential in development and data fields

This roadmap is a course that systematically organizes the essential knowledge of computer engineering (CS), which is the core IT theory that is the basis of development and data fields. Among these, we are opening lectures that can systematically learn the most important core subjects such as computer structure, operating system, and network.


Recommended for
these people

Who is this course right for?

  • Those seeking Python data analysis skills

  • Those who want to learn pandas and visualization techniques

  • Those wishing for long-term growth as data analysts

  • Those wanting to master data analysis skills long-term

  • Solid Data Analysis Basics Seekers.

Hello
This is

32,566

Learners

2,292

Reviews

1,949

Answers

4.9

Rating

13

Courses

잔재미코딩, Dave Lee

  • About 잔재미코딩 소개 블로그 [클릭]

  • 주요 경력: 쿠팡 수석 개발 매니저/Principle Product Manager, 삼성전자 개발 매니저 (경력 약 15년)

  • 학력: 고려대 일어일문 / 연세대 컴퓨터공학 석사 (완전 짬뽕)

  • 주요 개발 이력: 삼성페이, 이커머스 검색 서비스, RTOS 컴파일러, Linux Kernel Patch for NAS

  • 저서: 리눅스 커널 프로그래밍, 리눅스 운영 체제의 이해와 개발, 누구나 쓱 읽고 싹 이해하는 IT 핵심 기술, 왕초보를 위한 파이썬 프로그래밍 입문서

  • 운영 사이트: 잔재미코딩 (http://www.fun-coding.org) [클릭]

  • 풀스택/데이터과학/AI 관련 무료 자료를 공유하는 사이트입니다.

  • 기타: 잔재미코딩 유투브 채널 [클릭] 

    • IT 학습에 도움이 되는 팁/ 짧은 무료 강의를 공유하고자, 조금씩 시작하고 있습니다~

최신 현업과 IT 강의를 병행하며, 8년째 꾸준히 견고한 풀스택, 데이터과학, AI 강의를 만들고 있습니다.

 

Curriculum

All

58 lectures ∙ (12hr 26min)

Course Materials:

Lecture resources
Published: 
Last updated: 

Reviews

All

322 reviews

4.9

322 reviews

  • jeayun24654823님의 프로필 이미지
    jeayun24654823

    Reviews 2

    Average Rating 5.0

    5

    71% enrolled

    提供されているジュピターノートブックの資料はすっきりと見栄えが良く、covid19確定者の国別推移グラフ化実習したことが良く、わからないことを質問することで素早く誠心誠意まで答えてくださる。 5点満点 5点。説明も難しいです。

    • sorayeon님의 프로필 이미지
      sorayeon

      Reviews 81

      Average Rating 5.0

      5

      48% enrolled

      よろしくお願いします。大きな助けになりました。 講義内容、講義資料はとても満足しています。 機械学習講義も楽しみにしています。 ^_^

      • funcoding
        Instructor

        役に立ったのは本当に嬉しいです。私も作成してくださった受講評で力を出して、いつも考えて、より良い講義を作るよう努力します。講義資料は本当に…一生懸命作っています。資料を作るのが好きでもあります。満足しましょうなんて、本当に嬉しくて嬉しいですね。外部にオープンはしないでいただき、個人的にのみご活用もお願い致します。ありがとうございます。

    • hwanhanhan8907님의 프로필 이미지
      hwanhanhan8907

      Reviews 5

      Average Rating 5.0

      5

      93% enrolled

      コーディング入門者として何も知らずに始めたPythonブートキャンプ講義からクロール講義、そして今回Pythonデータ分析まで受講を終えました。 これらの講義が一見すると、それぞれ別々の講義ですが、授業中は常に強調されるように一つの流れと目的を持って講義をしてくれたうえ、何よりも非専攻者の立場で詳しく理解しやすく説明してくれて楽に授業を聞くことができました。 現在、不動産業をしていますが、これらの講義を聞いた後、ネイバー不動産をはじめとするサイトクロールや公共データポータルで提供するデータを必要に応じて加工して活用する能力ができました。 専門家が見る時は不足するかもしれませんが、IT関連の専門家ではなく不動産業をしながらこのような能力があるというのは本当に大きな武器だと思います。 また、受動的に他人が提供する加工されたデータだけを見ることと、自分が直接加工したデータを見ることは、天と地の違いです。 だから私のように初めて始める方々はあまり心配しないで残余ミコーディング様の講義を一つ一つじっくりと追いかけてみるといつの間にか成長した自分を発見できるはずです。 そして、希望事項が一つあれば、これまでに行ってきた講義(Pythonブートキャンプ、データベース、クロール、データ分析など)に基づいて、一つのプロジェクトを最初から最後まで完成する(たとえ講義の長さが比較的短くても)講義があれば、なしでいいようです。 私はもう途中で抜いたSQLとNOSQLを聞きに出発します!!!! 良い講義を感謝し、今後も信じて従います。

      • funcoding
        Instructor

        ああ…こんなに良い受講評を…時間も別々に聞いたのに…ありがとう。ちょっと感動がまた押されてきますね。私の考えでは、開発者はITだけ知っていますが、他の分野にいる方はそれぞれの分野に専門性があります。各分野にまだITまでよく知っている方が多くないので、自分の専門性がありながら、ITを活用できれば、すごい波及力を持つことができると思います。さて、そんな講義を作るのや、そんな講義を吸収するのはとても難しいことです。それにもかかわらず、本講義を通じて、不動産データを実際にPythonで分析するなんて、本当にいいですね。受講生もそれほど賢明だからだと思います。ありがとうございます。

    • jhryu12089922님의 프로필 이미지
      jhryu12089922

      Reviews 3

      Average Rating 5.0

      5

      100% enrolled

      私はディープラーニング、マシンラーニング、メカトロニクスに向かって大学院と研究を目指す学生です。 それで基本基を固めようと他の講師様のPython講義を聞き、データ処理分析過程を学ぶために該当講義を受講しました。 最初は他の講師様のように映像を撮りながらソースを作成するのではなく、授業準備物を準備して、その内容をほんのり講義するスタイルです。私が聞いたほとんどの講義は前者のものなので、後者の該当講義に適応するのに少し時間がかかりました。しかし、それだけ授業内容に関連する資料は内容が本当にしっかりしていました。この部分がとても気に入りました。 また、授業が進みながら最も印象深かったのは、ただ授業を続けるにもかかわらず繰り返し学習になるということです。私にとって人講を聞きながら一番難しいのは繰り返し学習です。 学園のような場合は課題などを利用して生徒に繰り返し学習をさせますが、人江を通じて繰り返し学習をするのは、平均的には私を含めて難しくなったり退屈する学生が多いはずです。しかし、この講義は新しい内容を学びながらも繰り返し学習になり、とても私に役立つ講義でした。もちろん再び他の講義を受講して繰り返し学習挑戦する計画ですがww… 私はこの講義を受講するとき、最初はビデオを一度ずっと見ます。ずっと見たら理解できない区間があればずっと繰り返してみました。そして動画を下げて、先生がくださった資料集を片方のモニターウィンドウに入れて、最初は覚えているようにソースを書き下ろしていき、覚えがないとき/ソースを全て作成したようだったときに資料集を確認するように進めました。 さらに、質問掲示板や動画に質問を投稿すると、遅れば一日を過ぎて早ければ一日もならず返事が来ます。先生の熱意を感じることができた部分です。また、Python講義を受講したときに感じたことの一つが質問をすると、その内容に関するリンクを一つ与えます。そしてこれを参照すれば役に立つだろうという方法で講義される方々を少し見ました。個人的には不幸でしたが、その授業の講師は一つ一つ丁寧にコメントを残してくれます。 そして、次の授業でモンゴDBに関する授業を聴く予定です! 講義は本当によく見ました^_^!

      • funcoding
        Instructor

        これはとても良い受講評を残してくれて本当に…ありがとう。こういう受講評を書くのに時間がかかりましたが、実際に感じたことをこんなに詳しく書いてくれて…実は少し感動しました。こういう受講評が良い講義を作れる大きな力です。 私も言われた方法 コードを作成していく方法、こうして資料と一種のシナリオで説明する方法 両方ともしてみたが、前者をしてみるとむしろ伝える内容が内実に伝えられないか、コードと伝える内容の両方とも気にしてみるとむしろ学習効果が落ちるシーダーです。だから後者を書くことにしました。 実は質問回答を毎日するのは私にとっても容易ではないことなのに…。 どうやら一度も会ったことがないので、やや返信が間違って伝えられれば誤解を買いやすく、そういえば気になっているということです。 こんなにオンラインで顔を出さずに多くの方々を見てみると色々な場合も多いのですが… 運が良くても多くの方々がそれでも肯定的に評価してくださって大きな力になりますね 本当にありがとう

    • iamcodingcat님의 프로필 이미지
      iamcodingcat

      Reviews 13

      Average Rating 5.0

      5

      100% enrolled

      クロール講義からずっと入ってきた学生です。非専攻者から進路を転向し、学部でこちらの分野専攻を一つにすることになり、その勉強と残材ミコーディング様の講義たちと一緒に勉強してみると相乗効果が多かったようです。 今回のデータ分析講義も本当によく聞きました。私が基礎データ分析講義をこれだけ聞いたわけではありませんが、やはり講師分が違うと学ぶ点も違うことを感じていきます!基礎をもっともっとしっかり学んだようです。 一つの願いがあるなら、現在個人的にキャグルやデイコンのような大会を通じてスコアをたくさん得るための勉強を進めています。だからキャグルを通じた機械学習講義も非常に期待になりますね! また、データ分析、科学側をたくさん勉強して、私は次の余裕があるときにウェブやアプリサービスをぜひ作ってみたいと思いました…!バックエンドとフロントエンドの世界がとても気になるので、そちらの分野の残材ミコーディング様講義も楽しみにしています!講義を作るために本当に苦労しており、質の高い講義に感謝します:)

      • funcoding
        Instructor

        こんなに長い受講評を書いて、時間もたくさんいただきましたが、良い受講評を残していただきありがとうございます。基本段階を抜け出してみると、といって講義に基本+中級+上級まで扱うこともできず、基本に該当する知識があまりにも散発的に多いので、この部分も悩みになったんですよ。部分があるのに…意味のない講義を作るよりは、一つでもできるだけ良い講義を作りたいそうですね。 希望があるなら、私の講義が芽生えなくなったら、ああ今からは私が欲しいスキルに慣れれば漢~真のブログ探し、曖昧な説明を一~真理解しながら一~真の時間がかかるだろうがこんな気がするほどの講義を作る数万あればどれくらいいいのでしょうか。ありがとうございます。

    Limited time deal ends in 3 days

    $7,115.00

    24%

    $59.40

    funcoding's other courses

    Check out other courses by the instructor!

    Similar courses

    Explore other courses in the same field!