검색 결과가 없어요
유니티 머신러닝 에이전트 완전정복 (기초편)
이 강의를 통해 수강생은 다양한 강화학습의 이론을 학습하고 이를 직접 구현해 볼 뿐만 아니라 유니티 머신러닝 에이전트를 이용하여 구현한 강화학습 알고리즘을 테스트해볼 강화학습 환경까지 직접 제작해볼 수 있습니다.
쏙쏙 이해되는 강화학습 핵심이론
이 강의를 통해 강화학습의 기본 이론을 익히실 수 있습니다.
프로그래머를 위한 강화학습(저자 직강)
비즈니스 혁신의 핵심 기술 강화학습에 관한 가장 쉽고 상세한 강의!!! 하루 2시간(2개 강의) 17일 안에 강화학습을 당신의 손안에 넣어드립니다. 지금 이 시간부터 강화학습은 이해하기 어려운 문제가 아닌 당신을 위한 훌륭한 도구가 됩니다.
모두를 위한 딥러닝 - 기본적인 머신러닝과 딥러닝 강좌
더 많은 분들이 머신 러닝과 딥러닝에 대해 더 이해하고 본인들의 문제를 이 멋진 도구를 이용해서 풀수 있게 하기위해 비디오 강의를 준비하였습니다. 더 나아가 이론에만 그치지 않고 최근 구글이 공개한 머신러닝을 위한 오픈소스인 TensorFlow를 이용해서 이론을 구현해 볼수 있도록 하였습니다.
핸즈온 머신러닝 2
아마존 베스트 셀러인 <핸즈온 머신러닝 2판>의 내용을 다룬 강의입니다. 대표적인 머신러닝 라이브러인 사이킷런을 사용하여 다양한 머신러닝 알고리즘과 평가 방법을 배웁니다. 또 가장 유명한 딥러닝 라이브러인 텐서플로와 케라스를 사용하여 인공 신경망부터 강화학습까지 이론과 실무를 다져 봅니다. 아직 모두 완료된 강의가 아닙니다. 매주 1~2개의 강의가 계속 추가될 예정입니다.
TensorFlow로 배우는 심층 강화학습 입문 - Deep Reinforcement Learning
심층 강화학습(Deep Reinforcement Learning)에 대한 필수 이론 학습을 통해 강화학습 기초 개념을 탄탄히 다지고, TensorFlow를 이용한 실제 코드 구현 실습을 통해 심층 강화학습의 원리를 자세히 학습할 수 있는 강의입니다.
R로 쉽게 배우는 강화학습
Q-learning부터 Deep Q-learning에 대해 배우고, 강화학습을 R로 구현해 보는 시간을 가집니다. Deep Q-network을 넘어서 Self-imitation learning과 Random Netowrk Distillation 까지 전체적인 강화학습 내용을 다룹니다.
모두를 위한 딥러닝 - Deep Reinforcement Learning
홍콩과기대 김성훈 교수님의 "모두를 위한 딥러닝" 강좌 두번째 시즌으로 '강화학습' 에 대해 학습해 봅니다.
강화학습 기초 이론
강화학습의 이론, 기초 개념을 탄탄히 다지고 싶은 분, 딥러닝이 강화학습에 어떻게 적용 되는지 배우고 싶으신 분께 도움이 됩니다.
만들면서 배우는 인공지능(강화학습 편)
본 강좌는 강화학습을 수학 없이 설명합니다. 개념을 쉽고 분명하게 배울 수 있습니다. 뿐만 아니라. 언어 중 제일 접근하기 쉬운 파이썬으로 작성해 놓은 RLkit 를 직접 코딩하면서 실제 틱택톡 게임을 구현하고 실행할 수 있습니다.