묻고 답해요
158만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결10주완성 C++ 코딩테스트 | 알고리즘 코딩테스트
비트마스킹 질문
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.안녕하세요 선생님 비트마스킹의 어려움 때문에 복습하고 있는데 1~20 까지 수들의 이진수를 외워 두는게 도움이 될까요???
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 1주차 과제] ARRAY,STRUCT, PIVOT, FUNNEL 연습문제
1. ARRAY, STRUCT 연습문제array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요.SELECT title, genre FROM advanced.array_exercises AS ae CROSS JOIN UNNEST(genres) AS genrearray_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. 배우와 배역은 별도의 컬럼으로 나와야 합니다.SELECT title, actor.actor, actor.character FROM advanced.array_exercises AS ae CROSS JOIN UNNEST(actors) AS actorarray_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character), 장르(genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다.SELECT title, actor.actor, actor.character, genre FROM advanced.array_exercises AS ae , UNNEST(actors) AS actor , UNNEST(genres) AS genre앱 로그 데이터(app_logs)의 배열을 풀어주세요.SELECT user_id, event_date, event_name, user_pseudo_id, event_param.key AS key, event_param.value.string_value AS string_value, event_param.value.int_value AS int_value FROM advanced.app_logs , UNNEST(event_params) AS event_param -- WHERE -- event_date = "2022-08-01"2. PIVOT 연습 문제orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT 해주세요.날짜(order_date)를 행(row)으로, user_id를 열(column)으로 만들어야 합니다.SELECT order_date, MAX(IF(user_id = 1, sum_of_amount, 0)) AS user_1, MAX(IF(user_id = 2, sum_of_amount, 0)) AS user_2, MAX(IF(user_id = 3, sum_of_amount, 0)) AS user_3 FROM ( SELECT order_date, user_id, SUM(amount) AS sum_of_amount FROM advanced.orders GROUP BY order_date, user_id ORDER BY order_date ) GROUP BY order_date ORDER BY order_dateorders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요.user_id를 행(row)으로, order_date를 열(column)으로 만들어야 합니다.SELECT user_id, MAX(IF(order_date = '2023-05-01', amount, 0)) AS `2023-05-01`, MAX(IF(order_date = '2023-05-02', amount, 0)) AS `2023-05-02`, MAX(IF(order_date = '2023-05-03', amount, 0)) AS `2023-05-03`, MAX(IF(order_date = '2023-05-04', amount, 0)) AS `2023-05-04`, MAX(IF(order_date = '2023-05-05', amount, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY user_id ORDER BY user_idorders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 해주세요.user_id를 행(row)으로, order_date를 열(column)로 만들고 주문을 많이 해도 1로 처리합니다.SELECT user_id, MAX(IF(order_date = '2023-05-01', 1, 0)) AS `2023-05-01`, MAX(IF(order_date = '2023-05-02', 1, 0)) AS `2023-05-02`, MAX(IF(order_date = '2023-05-03', 1, 0)) AS `2023-05-03`, MAX(IF(order_date = '2023-05-04', 1, 0)) AS `2023-05-04`, MAX(IF(order_date = '2023-05-05', 1, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY user_id ORDER BY user_iduser_id = 32888이 카트 추가하기(click_cart)를 누를 때 어떤 음식(food_id)을 담았나요?WITH base AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, MAX(IF(event_param.key = 'firebase screen', event_param.value.string_value, NULL)) AS firebase_screen, MAX(IF(event_param.key = 'food_id', event_param.value.int_value, null)) AS food_id, MAX(IF(event_param.key = 'session_id', event_param.value.string_value, null)) AS session_id FROM advanced.app_logs , UNNEST(event_params) AS event_param GROUP BY ALL ) SELECT food_id FROM base WHERE user_id = 32888 AND event_name = 'click_cart' GROUP BY food_id3. 퍼널 분석 연습문제각 퍼널의 유저 수를 집계WITH base AS( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, platform, MAX(IF(event_param.key = "firebase_screen", event_param.value.string_value, NULL)) AS firebase_screen, MAX(IF(event_param.key = "food_id", event_param.value.int_value, NULL)) AS food_id, MAX(IF(event_param.key = "session_id", event_param.value.int_value, NULL)) AS session_id FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS event_param GROUP BY ALL ), filter_event_and_concat_event_and_screen AS( SELECT * EXCEPT(event_name, firebase_screen), CONCAT(event_name, "-", firebase_screen) AS event_name_with_screen, DATETIME(TIMESTAMP_MICROS(event_timestamp), "Asia/Seoul") AS event_datetime FROM base WHERE event_date BETWEEN "2022-08-01" AND "2022-08-18" AND event_name IN ("screen_view", "click_payment") AND firebase_screen IN ("welcome", "home", "food_category", "restaurant", "cart") ) SELECT event_date, event_name_with_screen, CASE WHEN event_name_with_screen = 'screen_view-welcome' THEN 1 WHEN event_name_with_screen = 'screen_view-home' THEN 2 WHEN event_name_with_screen = 'screen_view-food_category' THEN 3 WHEN event_name_with_screen = 'screen_view-restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view-cart' THEN 5 WHEN event_name_with_screen = 'click_payment-cart' THEN 6 ELSE NULL END AS step_number, COUNT(DISTINCT user_pseudo_id) AS cnt FROM filter_event_and_concat_event_and_screen GROUP BY ALL HAVING step_number IS NOT NULL ORDER BY event_date, step_number
-
미해결
[바짝스터디 1주차 과제]
[ARRAY, STRUCT] 문제 1) array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요.SELECT title, genre FROM advanced.array_exercises CROSS JOIN UNNEST(genres) AS genre쿼리 결과 1)문제 2) array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요.SELECT title, actor.actor, actor.character FROM advanced.array_exercises CROSS JOIN UNNEST(actors) AS actor쿼리 결과 2) 문제 3) array_exercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르 (genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다.SELECT title, actor.actor AS actor, actor.character AS character, genre FROM advanced.array_exercises CROSS JOIN UNNEST(genres) AS genre CROSS JOIN UNNEST(actors) AS actor쿼리 결과 3)문제 4) 앱 로그 데이터(app_logs) 배열 풀기SELECT event_date, event_timestamp, event_name, event_param.key AS key, event_param.value.string_value AS string_value, event_param.value.int_value AS int_value, user_id, user_pseudo_id, platform FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date = "2022-08-01" LIMIT 100쿼리 결과 4)[PIVOT]문제 1) orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT해주세요.날짜(order_date)를 행(Row)으로, user_id를 열(Column)으로 만들어야 합니다.SELECT order_date, SUM(IF(user_id = 1, amount, 0)) AS user_1, SUM(IF(user_id = 2, amount, 0)) AS user_2, SUM(IF(user_id = 3, amount, 0)) AS user_3 FROM advanced.orders GROUP BY ALL ORDER BY order_date쿼리 결과 1)문제 2) orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)으로 만들어야 합니다SELECT user_id, SUM(IF(order_date = "2023-05-01", amount, 0)) AS `2023-05-01`, SUM(IF(order_date = "2023-05-02", amount, 0)) AS `2023-05-02`, SUM(IF(order_date = "2023-05-03", amount, 0)) AS `2023-05-03`, SUM(IF(order_date = "2023-05-04", amount, 0)) AS `2023-05-04`, SUM(IF(order_date = "2023-05-05", amount, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY ALL ORDER BY user_id 쿼리 결과 2)문제 3) orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)로 만들고 주문을 많이 해도 1로 처리합니다SELECT user_id, MAX(IF(order_date = "2023-05-01", 1, 0)) AS `2023-05-01`, MAX(IF(order_date = "2023-05-02", 1, 0)) AS `2023-05-02`, MAX(IF(order_date = "2023-05-03", 1, 0)) AS `2023-05-03`, MAX(IF(order_date = "2023-05-04", 1, 0)) AS `2023-05-04`, MAX(IF(order_date = "2023-05-05", 1, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY ALL ORDER BY user_id 쿼리 결과 3)문제 4)user_id = 32888이 카트 추가하기(click_cart)를 누를때 어떤 음식(food_id)을 담았나요?WITH base AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, MAX(IF(event_param.key = 'firebase_screen',event_param.value.string_value, NULL)) AS firebase_screen, MAX(IF(event_param.key = 'food_id',event_param.value.int_value, NULL)) AS food_id, MAX(IF(event_param.key = 'session_id',event_param.value.string_value, NULL)) AS session_id, FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param GROUP BY ALL ) SELECT user_id, event_date, COUNT(user_id) AS user_cnt, food_id FROM base WHERE user_id = 32888 and event_name = 'click_cart' GROUP BY ALL쿼리 결과 4) [퍼널분석]WITH base AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, platform, MAX(IF(event_param.key = "firebase_screen", event_param.value.string_value, NULL)) AS firebase_screen, MAX(IF(event_param.key = "session_id", event_param.value.string_value, NULL)) AS session_id FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN "2022-08-01" AND "2022-08-18" GROUP BY ALL ), filter_event_and_concat_event_and_screen AS ( SELECT * EXCEPT(event_name, firebase_screen, event_timestamp), CONCAT(event_name, "-", firebase_screen) AS event_name_with_screen, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime FROM base WHERE event_name IN ("screen_view", "click_payment") ) SELECT event_date, event_name_with_screen, CASE WHEN event_name_with_screen = "screen_view-welcome" THEN 1 WHEN event_name_with_screen = "screen_view-home" THEN 2 WHEN event_name_with_screen = "screen_view-food_category" THEN 3 WHEN event_name_with_screen = "screen_view-restaurant" THEN 4 WHEN event_name_with_screen = "screen_view-cart" THEN 5 WHEN event_name_with_screen = "click_payment-cart" THEN 6 ELSE NULL END AS step_number, COUNT(DISTINCT user_pseudo_id) AS cnt FROM filter_event_and_concat_event_and_screen GROUP BY ALL HAVING step_number IS NOT NULL 쿼리 결과
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 1주차 과제] ARRAY, STRUCT / PIVOT / 퍼널 연습 문제
1. ARRAY, STRUCT-- 1. array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요. -- genres 꺼내기 SELECT title , genre FROM `advanced.array_exercises` CROSS JOIN UNNEST(genres) AS genre -- 2. array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. -- arrary 안의 struct 영화/배우 꺼내기 SELECT title , ac.actor , ac.character FROM `advanced.array_exercises` CROSS JOIN UNNEST(actors) AS ac -- actor.actor도 가능 -- 3. array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character), 장르(genre) 출력 -- actors, genres 각각 꺼내기 (2번 조인) SELECT -- title, actor, character, genre title , ac.actor , ac.character , genre FROM `advanced.array_exercises` CROSS JOIN UNNEST(actors) AS ac CROSS JOIN UNNEST(genres) AS genre -- 4. 앱로그 데이터(app_logs)의 배열을 풀어주세요. -- event_params 꺼내기 SELECT user_id , event_date , event_name , user_pseudo_id , event_param.key , event_param.value.string_value , event_param.value.int_value FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS event_param -- WHERE event_date = '2022-08-01' -- test 2. PIVOT-- 1. orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIOVT해주세요. -- 날짜(order_date)를 행, user_id를 열, sum(amount) SELECT order_date , SUM(IF(user_id = 1, amount, 0)) AS user_1 , SUM(IF(user_id = 2, amount, 0)) AS user_2 , SUM(IF(user_id = 3, amount, 0)) AS user_3 FROM `advanced.orders` GROUP BY 1 ORDER BY 1 -- 2. orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount) 합계를 PIVOT -- user_id 행, order_date 열, sum(주문 금액), '-' 포함 날짜 별칭은 backtick(``) 활용 SELECT user_id , SUM(IF(order_date = '2023-05-01', amount, 0)) AS `2023-05-01` , SUM(IF(order_date = '2023-05-02', amount, 0)) AS `2023-05-02` , SUM(IF(order_date = '2023-05-03', amount, 0)) AS `2023-05-03` , SUM(IF(order_date = '2023-05-04', amount, 0)) AS `2023-05-04` , SUM(IF(order_date = '2023-05-05', amount, 0)) AS `2023-05-05` FROM `advanced.orders` GROUP BY user_id ORDER BY user_id -- 3. orders 테이블에서 사용자별 날짜별로 주문이 있다면 1, 없으면 0으로 PIOVT -- user_id 행, order_date 열, if(날짜, 1, 0) SELECT user_id , MAX(IF(order_date = '2023-05-01', 1, 0)) AS `2023-05-01` , MAX(IF(order_date = '2023-05-02', 1, 0)) AS `2023-05-02` , MAX(IF(order_date = '2023-05-03', 1, 0)) AS `2023-05-03` , MAX(IF(order_date = '2023-05-04', 1, 0)) AS `2023-05-04` , MAX(IF(order_date = '2023-05-05', 1, 0)) AS `2023-05-05` FROM `advanced.orders` GROUP BY user_id ORDER BY user_id 3. 퍼널3-1. 퍼널별 유저 수-- 1. 퍼널별 유저 수 : 2022-08-01 ~ 2022-08-18, 오픈 퍼널, COUNT(DISTINCT user_pseudo_id) WITH funnels AS ( -- 조건/컬럼 필터링, event_params UNNEST, event name + screen 문자열 컬럼 병합 SELECT CONCAT(event_name, '-', event_param.value.string_value) AS event_name_with_screen , COUNT(DISTINCT user_pseudo_id) AS cnt FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' AND event_name IN ('screen_view', 'click_payment') AND event_param.key = 'firebase_screen' AND event_param.value.string_value NOT IN ('food_detail', 'search', 'search_result') GROUP BY ALL ) SELECT event_name_with_screen -- step_number 생성 , (CASE WHEN event_name_with_screen = 'screen_view-welcome' THEN 1 WHEN event_name_with_screen = 'screen_view-home' THEN 2 WHEN event_name_with_screen = 'screen_view-food_category' THEN 3 WHEN event_name_with_screen = 'screen_view-restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view-cart' THEN 5 WHEN event_name_with_screen = 'click_payment-cart' THEN 6 END ) AS step_number , cnt FROM funnels ORDER BY step_number3-2. 퍼널별 유저 수(일자별)-- 2. 퍼널별 유저 수(일자별) : 2022-08-01 ~ 2022-08-18, 오픈 퍼널, COUNT(DISTINCT user_pseudo_id) WITH funnels AS ( -- 조건/컬럼 필터링, event_params UNNEST, event name + screen 문자열 컬럼 병합 SELECT -- 일자별 event_date , CONCAT(event_name, '-', event_param.value.string_value) AS event_name_with_screen , COUNT(DISTINCT user_pseudo_id) AS cnt FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' AND event_name IN ('screen_view', 'click_payment') AND event_param.key = 'firebase_screen' AND event_param.value.string_value NOT IN ('food_detail', 'search', 'search_result') GROUP BY ALL ) SELECT event_date , event_name_with_screen -- step_number 생성 , (CASE WHEN event_name_with_screen = 'screen_view-welcome' THEN 1 WHEN event_name_with_screen = 'screen_view-home' THEN 2 WHEN event_name_with_screen = 'screen_view-food_category' THEN 3 WHEN event_name_with_screen = 'screen_view-restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view-cart' THEN 5 WHEN event_name_with_screen = 'click_payment-cart' THEN 6 END ) AS step_number , cnt FROM funnels ORDER BY event_date, step_number -- 정렬 변경 3-3. 퍼널별 유저 수(일자별 PIVOT)-- 3. 퍼널별 유저 수(일자별) 집계 PIVOT WITH funnels AS ( -- 조건/컬럼 필터링, event_params UNNEST, event name + screen 문자열 컬럼 병합 SELECT -- 일자별 event_date , CONCAT(event_name, '-', event_param.value.string_value) AS event_name_with_screen , COUNT(DISTINCT user_pseudo_id) AS cnt FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' AND event_name IN ('screen_view', 'click_payment') AND event_param.key = 'firebase_screen' AND event_param.value.string_value NOT IN ('food_detail', 'search', 'search_result') GROUP BY ALL ) SELECT event_date -- event PIVOT , MAX(IF(event_name_with_screen = 'screen_view-welcome', cnt, NULL)) AS `screen_view-welcome` , MAX(IF(event_name_with_screen = 'screen_view-home', cnt, NULL)) AS `screen_view-home` , MAX(IF(event_name_with_screen = 'screen_view-food_category', cnt, NULL)) AS `screen_view-food_category` , MAX(IF(event_name_with_screen = 'screen_view-restaurant', cnt, NULL)) AS `screen_view-restaurant` , MAX(IF(event_name_with_screen = 'screen_view-cart', cnt, NULL)) AS `screen_view-cart` , MAX(IF(event_name_with_screen = 'click_payment-cart', cnt, NULL)) AS `click_payment-cart` FROM funnels GROUP BY ALL ORDER BY event_date
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 1주차 과제] ARRAY, STRUCT / PIVOT / 퍼널 쿼리 연습 문제
ARRAY, STRUCT 연습문제 1) SELECT title, genre FROM advanced.array_exercises CROSS JOIN UNNEST(genres) AS genre 2) SELECT title, actors, actors[SAFE_OFFSET(0)].actor AS frist_actor, actors[SAFE_OFFSET(0)].character AS first_character, actors[SAFE_OFFSET(1)].actor AS second_actor, actors[SAFE_OFFSET(1)].character AS second_character FROM advanced.array_exercises AS ae 3) SELECT title, actor.actor, actor.character FROM advanced.array_exercises AS ae CROSS JOIN UNNEST(actors) AS actor 4) SELECT event_Date, event_timestamp, event_name, event_params, user_id, event_param.key AS key, event_param.value AS value, event_param.value.string_value AS string_value, event_param.value.int_value AS int_value FROM advanced.app_logs_temp CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date = '2022-08-01'PIVOT 연습문제1) SELECT order_date, SUM(IF(user_id = 1, sum_of_amount, 0)) AS user_1, SUM(IF(user_id = 2, sum_of_amount, 0)) AS user_2, SUM(IF(user_id = 3, sum_of_amount, 0)) AS user_3, FROM ( SELECT order_date, user_id, SUM(amount) AS sum_of_amount FROM advanced.orders GROUP BY order_date, user_id ORDER BY order_date) GROUP BY order_date2) SELECT user_id, SUM(IF(order_date = '2023-05-01', sum_of_amount, 0)) AS `2023-05-01`, SUM(IF(order_date = '2023-05-02', sum_of_amount, 0)) AS `2023-05-02`, SUM(IF(order_date = '2023-05-03', sum_of_amount, 0)) AS `2023-05-03`, SUM(IF(order_date = '2023-05-04', sum_of_amount, 0)) AS `2023-05-04`, SUM(IF(order_date = '2023-05-05', sum_of_amount, 0)) AS `2023-05-05` FROM ( SELECT user_id, order_date, SUM(amount) AS sum_of_amount FROM advanced.orders GROUP BY user_id,order_date) GROUP BY user_id 3) SELECT user_id, MAX(IF(order_date = '2023-05-01' AND user_id IS NOT NULL, 1, 0)) AS `2023-05-01`, MAX(IF(order_date = '2023-05-02' AND user_id IS NOT NULL, 1, 0)) AS `2023-05-02`, MAX(IF(order_date = '2023-05-03' AND user_id IS NOT NULL, 1, 0)) AS `2023-05-03`, MAX(IF(order_date = '2023-05-04' AND user_id IS NOT NULL, 1, 0)) AS `2023-05-04`, MAX(IF(order_date = '2023-05-05' AND user_id IS NOT NULL, 1, 0)) AS `2023-05-05` FROM advanced.orders GROUP BY user_id 4) SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, MAX(IF(param.key = 'firebase_screen', param.value.string_value, NULL)) AS firebase_screen, MAX(IF(param.key = 'food_id', param.value.string_value, NULL)) AS food_id, MAX(IF(param.key = 'food_id', param.value.int_value, NULL)) AS food_id2, MAX(IF(param.key = 'session_id', param.value.string_value, NULL)) AS session_id FROM advanced.app_logs_temp CROSS JOIN UNNEST(event_params) AS param WHERE event_date = '2022-08-01' GROUP BY ALL 퍼널분석WITH Funnel AS (SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, MAX(IF(param.key = 'firebase_screen', param.value.string_value, NULL)) AS firebase_screen, MAX(IF(param.key = 'food_id', param.value.string_value, NULL)) AS food_id, MAX(IF(param.key = 'food_id', param.value.int_value, NULL)) AS food_id2, MAX(IF(param.key = 'session_id', param.value.string_value, NULL)) AS session_id FROM advanced.app_logs_temp CROSS JOIN UNNEST(event_params) AS param WHERE event_date = '2022-08-01' GROUP BY ALL ) SELECT event_date, COUNT(user_id) AS user_cnt FROM Funnel WHERE event_name = 'click_cart' GROUP BY event_date;
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 1주차 과제] ARRAY, STRUCT / PIVOT / 퍼널 쿼리 연습 문제
ARRAY, STRUCT, UNNEST 연습 문제array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요SELECT title, genre FROM `plucky-catfish-394207.advanced.array_exercises` , unnest(genres) as genre ORDER BY 1array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. 배우와 배역은 별도의 컬럼으로 나와야 합니다SELECT title, actor.actor, actor.character, FROM `plucky-catfish-394207.advanced.array_exercises` , unnest(genres) as genre ORDER BY 1array_exercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르 (genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다 SELECT title, actor.actor, genre, FROM `plucky-catfish-394207.advanced.array_exercises` , unnest(genres) as genre , unnest(actors) as actors ORDER BY 1앱 로그 데이터(app_logs)의 배열을 풀어주세요SELECT user_id, event_date, event_name, user_pseudo_id, ep.key, ep.value.string_value, ep.value.int_value FROM `plucky-catfish-394207.advanced.array_exercises` , unnest(event_params) as ep ORDER BY 2 PIVOTorders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT해주세요. 날짜(order_date)를 행(Row)으로, user_id를 열(Column)으로 만들어야 합니다SELECT order_date, SUM(IF(user_id = 1, amount, 0) as user_1, SUM(IF(user_id = 2, amount, 0) as user_2, SUM(IF(user_id = 3, amount, 0) as user_3, FROM `plucky-catfish-394207.advanced.array_exercises` , unnest(event_params) as ep GROUP BY 1 ORDER BY 1orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)으로 만들어야 합니다 SELECT user_id, SUM(IF(order_date = '2023-05-01', amount, 0) as `2023-05-01`, SUM(IF(order_date = '2023-05-02', amount, 0) as `2023-05-02`, SUM(IF(order_date = '2023-05-03', amount, 0) as `2023-05-03`, SUM(IF(order_date = '2023-05-04', amount, 0) as `2023-05-04`, SUM(IF(order_date = '2023-05-05', amount, 0) as `2023-05-05`, FROM `plucky-catfish-394207.advanced.array_exercises` , unnest(event_params) as ep GROUP BY 1 ORDER BY 1orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)로 만들고 주문을 많이 해도 1로 처리합니다 SELECT user_id, SUM(IF(order_date = '2023-05-01', amount > 0, 1, 0) as `2023-05-01`, SUM(IF(order_date = '2023-05-02', amount > 0, 1, 0) as `2023-05-02`, SUM(IF(order_date = '2023-05-03', amount > 0, 1, 0) as `2023-05-03`, SUM(IF(order_date = '2023-05-04', amount > 0, 1, 0) as `2023-05-04`, SUM(IF(order_date = '2023-05-05', amount > 0, 1, 0) as `2023-05-05`, FROM `plucky-catfish-394207.advanced.array_exercises` , unnest(event_params) as ep GROUP BY 1 ORDER BY 1user_id = 32888이 카트 추가하기(click_cart)를 누를때 어떤 음식(food_id)을 담았나요? SELECT event_date, event_name, event_timestamp, user_id, user_pseudo_id, MAX(IF(ep.key = 'firebase_screen', ep.value.string_value, NULL)) as firebase_screen, MAX(IF(ep.key = 'food_id', ep.value.int_value, NULL)) as food_id, MAX(IF(ep.key = 'session_id', ep.value.int_value, NULL)) as session_id, FROM `plucky-catfish-394207.advanced.array_exercises` , unnest(event_params) as ep WHERE event_date = '2022-08-01' AND user_id = 32888 GROUP BY 1, 2, 3, 4, 5 퍼널 분석WITH base AS ( SELECT event_date event_timestamp, event_name, user_id, user_pseudo_id, platform, MAX(IF(event_param.key = "firebase_screen", event_param.value.string_value, NULL)) AS firebase_screen, MAX(IF(event_param.key = "session_id", event_param.value.string_value, NULL)) AS session_id FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN "2022-08-01" AND "2022-08-18" GROUP BY ALL ), filter_event_and_concat_event_and_screen AS ( SELECT * EXCEPT(event_name, firebase_screen, event_timestamp), CONCAT(event_name, "-", firebase_screen) AS event_name_with_screen, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime FROM base WHERE event_name IN ("screen_view", "click_payment") ), add_step_number AS ( SELECT event_date, event_name_with_screen, CASE WHEN event_name_with_screen = "screen_view-welcome" THEN 1 WHEN event_name_with_screen = "screen_view-home" THEN 2 WHEN event_name_with_screen = "screen_view-food_category" THEN 3 WHEN event_name_with_screen = "screen_view-restaurant" THEN 4 WHEN event_name_with_screen = "screen_view-cart" THEN 5 WHEN event_name_with_screen = "click_payment-cart" THEN 6 ELSE NULL END AS step_number, COUNT(DISTINCT user_pseudo_id) AS cnt FROM filter_event_and_concat_event_and_screen GROUP BY ALL HAVING step_number IS NOT NULL
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[ 인프런 빅쿼리 빠짝스터디 1주차 ] ARRAY, STRUCT 연습 문제 / PIVOT 연습 문제 / 퍼널 쿼리 연습 문제
ARRAY, STRUCT-- array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주기. SELECT title, genre FROM advanced.array_exercises CROSS JOIN UNNEST(genres) as genre-- array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주기. 단, 배우와 배역은 별도의 컬럼으로 나와야 함. SELECT title, actor.actor, actor.character FROM `advanced.array_exercises` CROSS JOIN UNNEST(actors) as actor-- array_exercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르(genre) 출력하기 한 행에 배우, 배역, 장르가 모두 표시되어야 된다. SELECT title, actor.actor, actor.character, genre FROM `advanced.array_exercises` CROSS JOIN UNNEST(actors) as actor CROSS JOIN UNNEST(genres) as genre -- 앱 로그 데이터 (app_logs)의 배열 풀기 SELECT user_id, event_date, event_name, user_pseudo_id, event_param.key, event_param.value.string_value, event_param.value.int_value FROM advanced.app_logs CROSS JOIN UNNEST(event_params) as event_param limit 500 데이터 PIVOT-- orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT하기. 날짜(order_date)를 행(Row)으로, user_id를 열(Column)으로 만들어야됨. SELECT order_date, SUM(IF(user_id = 1,amount,0)) AS user_1, SUM(IF(user_id = 2,amount,0)) AS user_2, SUM(IF(user_id = 3,amount,0)) AS user_3 FROM advanced.orders GROUP BY order_date ORDER BY order_date asc;-- orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT하기. user_id를 행으로, order_date를 열로 만들어야 됨. SELECT user_id, sum(if(order_date = '2023-05-01',amount, 0)) AS `2023-05-01`, sum(if(order_date = '2023-05-02',amount, 0)) AS `2023-05-02`, sum(if(order_date = '2023-05-03',amount, 0)) AS `2023-05-03`, sum(if(order_date = '2023-05-04',amount, 0)) AS `2023-05-04`, sum(if(order_date = '2023-05-05',amount, 0)) AS `2023-05-05` FROM advanced.orders GROUP BY user_id ORDER BY user_id ASC-- orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 피벗하기. user_id를 행으로, order_date를 열로 만들고 주문이 많아도 1로 처리. SELECT user_id, sum(if(order_date = '2023-05-01',1, 0)) AS `2023-05-01`, sum(if(order_date = '2023-05-02',1, 0)) AS `2023-05-02`, sum(if(order_date = '2023-05-03',1, 0)) AS `2023-05-03`, sum(if(order_date = '2023-05-04',1, 0)) AS `2023-05-04`, sum(if(order_date = '2023-05-05',1, 0)) AS `2023-05-05` FROM advanced.orders GROUP BY user_id ORDER BY user_id ASC-- 앱 로그 데이터 배열 PIVOT 하기 ( user_id = 32888이 카트 추가하기 (click_cart)를 누를때 어떤 음식(food_id)을 담았나?) WITH app_pivot AS ( SELECT user_id, event_date, event_name, user_pseudo_id, event_param.key AS key, event_param.value.string_value AS string_value, event_param.value.int_value AS int_value FROM advanced.app_logs CROSS JOIN UNNEST(event_params) as event_param ) SELECT user_id, event_date, event_name, user_pseudo_id, MAX(IF(key = 'firebase_screen', string_value,NULL)) AS `firebase_screen`, MAX(IF(key = 'food_id',int_value,NULL)) AS `food_id`, MAX(IF(key = 'session_id',string_value,NULL)) AS `session_id` FROM app_pivot WHERE user_id = 32888 AND event_name = 'click_cart' GROUP BY user_id,event_date, event_name, user_pseudo_id ORDER BY event_date ASC;퍼널 분석-- 일자별 이벤트 별 집계형태를 PIVOT 형태로 전환하기 WITH param_pivot AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, MAX(IF(key = 'firebase_screen', event_param.value.string_value,NULL)) AS `firebase_screen`, MAX(IF(key = 'food_id',event_param.value.int_value,NULL)) AS `food_id`, MAX(IF(key = 'session_id',event_param.value.string_value,NULL)) AS `session_id` FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' GROUP BY ALL), event_table AS (SELECT * EXCEPT(event_name,firebase_screen), CONCAT(event_name,'_', firebase_screen) AS event_name_with_screen, FROM param_pivot WHERE event_name IN ('screen_view','click_payment') GROUP BY all ORDER BY event_date ASC ) , final AS (SELECT event_date, event_name_with_screen, (CASE WHEN event_name_with_screen = 'screen_view_welcome' THEN 1 WHEN event_name_with_screen = 'screen_view_home' THEN 2 WHEN event_name_with_screen = 'screen_view_food_category' THEN 3 WHEN event_name_with_screen = 'screen_view_restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view_cart' THEN 5 WHEN event_name_with_screen = 'clik_payment_cart' THEN 6 ELSE NULL END ) AS step_number, COUNT( DISTINCT user_pseudo_id) AS cnt FROM event_table GROUP BY event_date, event_name_with_screen HAVING step_number IS NOT NULL ORDER BY event_date) SELECT event_date, SUM(IF(event_name_with_screen = 'screen_view_welcome', cnt, 0)) AS `screen_view_welcom`, SUM(IF(event_name_with_screen = 'screen_view_home', cnt, 0)) AS `screen_view_home`, SUM(IF(event_name_with_screen = 'screen_view_food_category', cnt, 0)) AS `screen_view_food_category`, SUM(IF(event_name_with_screen = 'screen_view_restaurant', cnt, 0)) AS `screen_view_restaurant`, SUM(IF(event_name_with_screen = 'screen_view_cart', cnt, 0)) AS `screen_view_cart`, SUM(IF(event_name_with_screen = 'click_payment_cart', cnt, 0)) AS `click_payment_cart` FROM final GROUP BY event_date ORDER BY event_date ASC;
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[바짝스터디 1주차 과제] ARRAY, STRUCT / PIVOT / 퍼널 분석 연습문제
1. ARRAY, STRUCT 연습문제(1) array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요.SELECT title, genre FROM advanced.array_exercises AS ae CROSS JOIN UNNEST(genres) AS genre*UNNEST(ARRAY_Column) = UNNEST(배열)(2) array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요.배우와 배역은 별도의 컬럼으로 나와야 합니다.SELECT title, actor.actor, actor.character FROM advanced.array_exercises AS ae CROSS JOIN UNNEST(actors) AS actor(3) array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character), 장르(genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다.SELECT title, actor.actor, actor.character, genre FROM advanced.array_exercises AS ae , UNNEST(actors) AS actor , UNNEST(genres) AS genre*연속해서 CROSS JOIN UNNEST 사용 가능(4) 앱 로그 데이터(app_logs)의 배열을 풀어주세요.SELECT user_id, event_date, event_name, user_pseudo_id, event_param.key AS key, event_param.value.string_value AS string_value, event_param.value.int_value AS int_value FROM advanced.app_logs , UNNEST(event_params) AS event_param -- WHERE -- event_date = "2022-08-01"*실습 시, 파티션 사용 필요2. PIVOT 연습문제(1) orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT 해주세요.날짜(order_date)를 행(row)으로, user_id를 열(column)으로 만들어야 합니다.SELECT order_date, MAX(IF(user_id = 1, sum_of_amount, 0)) AS user_1, MAX(IF(user_id = 2, sum_of_amount, 0)) AS user_2, MAX(IF(user_id = 3, sum_of_amount, 0)) AS user_3 FROM ( SELECT order_date, user_id, SUM(amount) AS sum_of_amount FROM advanced.orders GROUP BY order_date, user_id ORDER BY order_date ) GROUP BY order_date ORDER BY order_date*첫번째 풀이 내 집계 함수 사용 시, GROUP BY 잊지않기*ctrl+d 사용(2) orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요.user_id를 행(row)으로, order_date를 열(column)으로 만들어야 합니다.SELECT user_id, MAX(IF(order_date = '2023-05-01', amount, 0)) AS `2023-05-01`, MAX(IF(order_date = '2023-05-02', amount, 0)) AS `2023-05-02`, MAX(IF(order_date = '2023-05-03', amount, 0)) AS `2023-05-03`, MAX(IF(order_date = '2023-05-04', amount, 0)) AS `2023-05-04`, MAX(IF(order_date = '2023-05-05', amount, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY user_id ORDER BY user_id(3) orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 해주세요. user_id를 행(row)으로, order_date를 열(column)로 만들고 주문을 많이 해도 1로 처리합니다.SELECT user_id, MAX(IF(order_date = '2023-05-01', 1, 0)) AS `2023-05-01`, MAX(IF(order_date = '2023-05-02', 1, 0)) AS `2023-05-02`, MAX(IF(order_date = '2023-05-03', 1, 0)) AS `2023-05-03`, MAX(IF(order_date = '2023-05-04', 1, 0)) AS `2023-05-04`, MAX(IF(order_date = '2023-05-05', 1, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY user_id ORDER BY user_id(4) user_id = 32888이 카트 추가하기(click_cart)를 누를 때 어떤 음식(food_id)을 담았나요?WITH base AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, MAX(IF(event_param.key = 'firebase screen', event_param.value.string_value, NULL)) AS firebase_screen, MAX(IF(event_param.key = 'food_id', event_param.value.int_value, null)) AS food_id, MAX(IF(event_param.key = 'session_id', event_param.value.string_value, null)) AS session_id FROM advanced.app_logs , UNNEST(event_params) AS event_param GROUP BY ALL ) SELECT food_id FROM base WHERE user_id = 32888 AND event_name = 'click_cart' GROUP BY food_id3. 퍼널 분석 연습문제(1) 각 퍼널의 유저 수를 집계 데이터 : 2022-08-01 ~ 2022-08-18WITH base AS( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, platform, MAX(IF(event_param.key = "firebase_screen", event_param.value.string_value, NULL)) AS firebase_screen, MAX(IF(event_param.key = "food_id", event_param.value.int_value, NULL)) AS food_id, MAX(IF(event_param.key = "session_id", event_param.value.int_value, NULL)) AS session_id FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS event_param GROUP BY ALL ), filter_event_and_concat_event_and_screen AS( SELECT * EXCEPT(event_name, firebase_screen), CONCAT(event_name, "-", firebase_screen) AS event_name_with_screen, DATETIME(TIMESTAMP_MICROS(event_timestamp), "Asia/Seoul") AS event_datetime FROM base WHERE event_date BETWEEN "2022-08-01" AND "2022-08-18" AND event_name IN ("screen_view", "click_payment") AND firebase_screen IN ("welcome", "home", "food_category", "restaurant", "cart") ) SELECT event_date, event_name_with_screen, CASE WHEN event_name_with_screen = 'screen_view-welcome' THEN 1 WHEN event_name_with_screen = 'screen_view-home' THEN 2 WHEN event_name_with_screen = 'screen_view-food_category' THEN 3 WHEN event_name_with_screen = 'screen_view-restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view-cart' THEN 5 WHEN event_name_with_screen = 'click_payment-cart' THEN 6 ELSE NULL END AS step_number, COUNT(DISTINCT user_pseudo_id) AS cnt FROM filter_event_and_concat_event_and_screen GROUP BY ALL HAVING step_number IS NOT NULL ORDER BY event_date, step_number
-
미해결
[바짝스터디 1주차 과제] ARRAY, STRUCT 연습 문제 / PIVOT 연습 문제 / 퍼널 쿼리 연습 문제
ARRAY, STRUCT1) array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요.SELECT title, genre FROM advanced.array_exercises CROSS JOIN UNNEST(genres) as genre2) array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. 배우와 배역은 별도의 컬럼으로 나와야 합니다.SELECT title, actor.actor, actor.character FROM advanced.array_exercises CROSS JOIN UNNEST(actors) as actor3) array_exercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르 (genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다.SELECT title, actor.actor as actor, actor.character as character, genre FROM advanced.array_exercises CROSS JOIN UNNEST(genres) as genre CROSS JOIN UNNEST(actors) as actor ORDER BY 1, 2 desc4) 앱 로그 데이터(app_logs)의 배열을 풀어주세요.SELECT user_id, event_date, event_name, user_pseudo_id, evnent_parm.key AS key, evnent_parm.value.string_value AS string_value, evnent_parm.value.int_value AS int_value, FROM advanced.app_logs, UNNEST(event_params) AS evnent_parm PIVOT1) orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT해주세요. 날짜(order_date)를 행(Row)으로, user_id를 열(Column)으로 만들어야 합니다.SELECT order_date, SUM(IF(user_id=1,amount,0)) AS user_1, SUM(IF(user_id=2,amount,0)) AS user_2, SUM(IF(user_id=3,amount,0)) AS user_3 FROM advanced.orders GROUP BY order_date ORDER BY order_date;2) orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)으로 만들어야 합니다.SELECT user_id, COALESCE(SUM(IF(order_date = '2023-05-01', amount, null)),0) AS `2023-05-01`, COALESCE(SUM(IF(order_date = '2023-05-02', amount, null)),0) AS `2023-05-02`, COALESCE(SUM(IF(order_date = '2023-05-03', amount, null)),0) AS `2023-05-03`, COALESCE(SUM(IF(order_date = '2023-05-04', amount, null)),0) AS `2023-05-04`, COALESCE(SUM(IF(order_date = '2023-05-05', amount, null)),0) AS `2023-05-05`, FROM advanced.orders GROUP BY user_id ORDER BY user_id;3) orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)로 만들고 주문을 많이 해도 1로 처리합니다.SELECT user_id, MAX(IF(order_date = '2023-05-01' AND order_id is not null, 1, 0)) AS `2023-05-01`, MAX(IF(order_date = '2023-05-02' AND order_id is not null, 1, 0)) AS `2023-05-02`, MAX(IF(order_date = '2023-05-03' AND order_id is not null, 1, 0)) AS `2023-05-03`, MAX(IF(order_date = '2023-05-04' AND order_id is not null, 1, 0)) AS `2023-05-04`, MAX(IF(order_date = '2023-05-05' AND order_id is not null, 1, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY user_id ORDER BY user_id; 퍼널 분석1) 퍼널 별 유저 수 집계데이터 : 2022-08-01 ~ 2022-08-18WITH funnel_data_raw AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, MAX(IF(pr.key = 'firebase_screen', pr.value.string_value, null)) AS screen_name, CONCAT(event_name, '-', MAX(IF(pr.key = 'firebase_screen', pr.value.string_value, null))) AS event_name_with_screen FROM advanced.app_logs, UNNEST(event_params) AS pr WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' GROUP BY 1,2,3,4,5 ) SELECT event_name_with_screen, CASE WHEN event_name_with_screen = 'screen_view-welcome' THEN 1 WHEN event_name_with_screen = 'screen_view-home' THEN 2 WHEN event_name_with_screen = 'screen_view-food_category' THEN 3 WHEN event_name_with_screen = 'screen_view-restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view-cart' THEN 5 WHEN event_name_with_screen = 'click_payment-cart' THEN 6 END AS step_number, COUNT(DISTINCT user_pseudo_id) AS cnt FROM funnel_data_raw WHERE event_name IN ('screen_view', 'click_payment') AND screen_name IN ('welcome', 'home', 'food_category', 'restaurant', 'cart') GROUP BY 1,2 ORDER BY 2 ;2) 퍼널 별 유저 수 집계 (일자별)WITH funnel_data_raw AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, MAX(IF(pr.key = 'firebase_screen', pr.value.string_value, null)) AS screen_name, CONCAT(event_name, '-', MAX(IF(pr.key = 'firebase_screen', pr.value.string_value, null))) AS event_name_with_screen FROM advanced.app_logs, UNNEST(event_params) AS pr WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' GROUP BY 1,2,3,4,5 ) SELECT event_date, event_name_with_screen, CASE WHEN event_name_with_screen = 'screen_view-welcome' THEN 1 WHEN event_name_with_screen = 'screen_view-home' THEN 2 WHEN event_name_with_screen = 'screen_view-food_category' THEN 3 WHEN event_name_with_screen = 'screen_view-restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view-cart' THEN 5 WHEN event_name_with_screen = 'click_payment-cart' THEN 6 END AS step_number, COUNT(DISTINCT user_pseudo_id) AS cnt FROM funnel_data_raw WHERE event_name IN ('screen_view', 'click_payment') AND screen_name IN ('welcome', 'home', 'food_category', 'restaurant', 'cart') GROUP BY 1,2,3 ORDER BY 1,3 ;3) 집계한 데이터를 PIVOT-- 연구 및 추가적 작업 필요 배운점대용량의 복잡한 데이터를 의도에 따라 구조화 및 시각화하는 기초 지식을 습득함. 과업이 복잡해지면 쿼리가 깔끔하게 정리가 되지 않거나 스텝이 꼬이는 등의 어려움을 겪기도 함.각 연습문제에 대해 '왜이 쿼리를 실행하는 것이며, 그 결과값을 통해 어떤 추가적인 Action을 취할 수 있는가' 실무 관점으로 고민해보는 계기가 되었음.
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 1주차 과제] ARRAY, STRUCT 연습문제 / PIVOT 연습문제 / 퍼널별 전환율을 쉽게 구할 수 있도록 PIVOT해보기
연습문제CREATE OR REPLACE TABLE advanced.array_excercised AS #DDL SELECT movie_id, title, actors, genres FROM ( SELECT 1 AS movie_id, 'Avengers: Endgame' AS title, ARRAY<STRUCT<actor STRING, character STRING>>[ STRUCT('Robert Downey Jr.', 'Tony Stark'), STRUCT('Chris Evans', 'Steve Rogers') ] AS actors, ARRAY<STRING>['Action', 'Adventure', 'Drama'] AS genres UNION ALL SELECT 2, 'Inception', ARRAY<STRUCT<actor STRING,character STRING>>[ STRUCT('leonardo DiCaprio', 'Cobb'), STRUCT('Joseph Gordon-Levitt', 'Arthur') ], ARRAY<STRING>['Action', 'Adventure', 'Sci-Fi'] UNION ALL SELECT 3, 'The Dark Knight', ARRAY<STRUCT<actor STRING, character STRING>>[ STRUCT('Christian Bale', 'Bruce Wayne'), STRUCT('Heath Ledger', 'Joker') ], ARRAY<STRING>['Action', 'Crime', 'Drama'] ) → actors라는 STRUCT 구조체를 만들고 그 안에 2개의 필드 actor와 character를 지정하고, STRUCT 구조체 2개를 list처럼 ARRAY에 넣은 것.위의 테이블을 가지고 연습문제 1~4번 진행array_excercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요.SELECT title, genre FROM advanced.array_excercised CROSS JOIN UNNEST(genres) AS genre array_excercised 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. 배우와 배역은 별도의 컬럼으로 나와야 합니다.SELECT title, actor.actor, actor.character FROM advanced.array_excercised CROSS JOIN UNNEST(actors) AS actor actors ARRAY안에 2개의 STRUCT 구조체가 있는 구조이므로 ARRAY 데이터에 접근하는 방법으로 데이터에는 접근 가능actors[SAFE_OFFSET(0)].actor AS first_actorarray_excercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르(genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다.SELECT title, actor.actor, actor.character, genre FROM advanced.array_excercised CROSS JOIN UNNEST(actors) AS actor CROSS JOIN UNNEST(genres) AS genre *UNNEST를 2번 연속 사용할 수 있다.*쿼리문의 실행순서는 FROM → JOIN → SELECT 이다. UNNEST를 통해 만들어진 actor는 현재 actor.actor가 아니라 actor라는 STRUCT 구조체이므로 구조체에 바로 접근할 수 없다는 에러가 뜰 수 있다.앱 로그 데이터(app_logs)의 배열을 풀어주세요. SELECT event_date, event_timestamp, event_name, event_param.key AS key, event_param.value AS value, user_id, user_pseudo_id, platform FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_paramevent_params는 RECORD라고 되어있는데 STRUCT이다. 중첩된 구조라는 의미.PIVOT 연습문제orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT해주세요. 날짜(order_date)를 행(Row)으로, user_id를 열(column)으로 만들어야 합니다.SELECT order_date, SUM(IF(user_id = 1, amount, 0)) AS user_1, SUM(IF(user_id = 2, amount, 0)) AS user_2, SUM(IF(user_id = 3, amount, 0)) AS user_3 FROM advanced.orders GROUP BY order_date ORDER BY order_date 2. orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT해주세요. user_id를 행(Row)으로, order_date를 열(Column)으로 만들어야 합니다.SELECT user_id, SUM(IF(order_date = "2023-05-01", amount, 0)) AS `2023-05-01`, SUM(IF(order_date = "2023-05-02", amount, 0)) AS `2023-05-02`, SUM(IF(order_date = "2023-05-03", amount, 0)) AS `2023-05-03`, SUM(IF(order_date = "2023-05-04", amount, 0)) AS `2023-05-04`, SUM(IF(order_date = "2023-05-05", amount, 0)) AS `2023-05-05` FROM advanced.orders GROUP BY user_id orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 PIVOT해주세요. user_id를 행(Row)으로, order_date를 열(Column)로 만들고 주문을 많이 해도 1로 처리합니다.SELECT user_id, MAX(IF(order_date = "2023-05-01", 1, 0)) AS `2023-05-01`, MAX(IF(order_date = "2023-05-02", 1, 0)) AS `2023-05-02`, MAX(IF(order_date = "2023-05-03", 1, 0)) AS `2023-05-03`, MAX(IF(order_date = "2023-05-04", 1, 0)) AS `2023-05-04`, MAX(IF(order_date = "2023-05-05", 1, 0)) AS `2023-05-05` FROM advanced.orders GROUP BY user_id 4. user_id = 32888이 카트 추가하기(click_cart)를 누를 때 어떤 음식(food_id)을 담았나요?WITH base AS( SELECT #* EXCEPT(event_params), event_date, event_timestamp, event_name, event_param.key AS key, event_param.value.string_value AS string_value, event_param.value.int_value AS int_value, user_id, user_pseudo_id, platform FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param ) SELECT user_id, event_date, event_name, MAX(IF(key = 'firebase_screen', string_value, NULL)) AS firebase_screen, MAX(IF(key = 'food_id', int_value, NULL)) AS food_id, MAX(IF(key = 'session_id', string_value, NULL)) AS session_id FROM base WHERE user_id = 32888 AND event_name = 'click_cart' GROUP BY user_id, event_date, event_name퍼널별 전환율을 쉽게 구할 수 있도록 PIVOT 해보기 WITH base AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, platform, #event_param, MAX(IF(event_param.key = 'firebase_screen', event_param.value.string_value, NULL)) AS firebase_screen, #MAX(IF(event_param.key = 'food_id', event_param.value.int_value, NULL)) AS food_id, MAX(IF(event_param.key = 'session_id', event_param.value.string_value, NULL)) AS session_id FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param WHERE #event_date = "2022-08-01" #적은 데이터로 쿼리를 작성하기 위해 만들어둔 조건 event_date BETWEEN "2022-08-01" AND "2022-08-18" GROUP BY ALL ), filter_event_and_concat_event_and_screen AS ( SELECT * EXCEPT(event_name, firebase_screen, event_timestamp), CONCAT(event_name, "-", firebase_screen) AS event_name_with_screen, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime FROM base WHERE event_name IN ("screen_view", "click_payment") ), funnel_analysis AS ( SELECT event_date, #일자별로 퍼널별 유저수 쿼리 event_name_with_screen, CASE WHEN event_name_with_screen = "screen_view-welcome" THEN 1 WHEN event_name_with_screen = "screen_view-home" THEN 2 WHEN event_name_with_screen = "screen_view-food_category" THEN 3 WHEN event_name_with_screen = "screen_view-restaurant" THEN 4 WHEN event_name_with_screen = "screen_view-cart" THEN 5 WHEN event_name_with_screen = "click_payment-cart" THEN 6 ELSE NULL END AS step_number, COUNT(DISTINCT user_pseudo_id) AS cnt FROM filter_event_and_concat_event_and_screen GROUP BY ALL HAVING step_number IS NOT NULL ORDER BY event_date ) SELECT event_date, MAX(IF (event_name_with_screen = "screen_view-welcome", cnt, NULL)) AS `screen_view-welcome`, MAX(IF (event_name_with_screen = "screen_view-home", cnt, NULL)) AS `screen_view-home`, MAX(IF (event_name_with_screen = "screen_view-food_category", cnt, NULL)) AS `screen_view-food_category`, MAX(IF (event_name_with_screen = "screen_view-restaurant", cnt, NULL)) AS `screen_view-restaurant`, MAX(IF (event_name_with_screen = "screen_view-cart", cnt, NULL)) AS `screen_view-cart`, MAX(IF (event_name_with_screen = "click_payment-cart", cnt, NULL)) AS `click_payment-cart` FROM funnel_analysis GROUP BY ALL ORDER BY event_date
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 1주차 과제] Array, Struct, Pivot, Funnel
1. ARRAY, STRUCT1) array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요.SELECT title , genre FROM advanced.array_exercises CROSS JOIN UNNEST(genres) AS genre ;2) array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. (배우와 배역은 별도의 컬럼으로 나와야 합니다)-- 동일한 단어에 대해 선택할 수 있는 함수 : cmd+d SELECT title , actor.actor , actor.character FROM advanced.array_exercises CROSS JOIN UNNEST(actors) AS actor ;3) array_exercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르(genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다.SELECT title , actor.actor , actor.character , genre FROM advanced.array_exercises CROSS JOIN UNNEST(actors) AS actor CROSS JOIN UNNEST(genres) AS genre ;4) 앱 로그 데이터(app_logs)의 배열을 풀어주세요.SELECT user_id , event_date , event_name , user_pseudo_id , event_param.key , event_param.value.string_value , event_param.value.int_value , platform FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param ;2. PIVOT1) orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT해주세요. 날짜(order_date)를 행(Row)으로, user_id를 열(Column)으로 만들어야 합니다.SELECT order_date , SUM(IF(user_id = 1, amount, NULL)) AS `user_id_1` , SUM(IF(user_id = 2, amount, NULL)) AS `user_id_2` , SUM(IF(user_id = 3, amount, NULL)) AS `user_id_3` FROM advanced.orders GROUP BY 1 ORDER BY 1 ;2) orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)으로 만들어야 합니다.SELECT user_id , SUM(IF(order_date = '2023-05-01', amount, 0)) AS `2023-05-01` , SUM(IF(order_date = '2023-05-02', amount, 0)) AS `2023-05-02` , SUM(IF(order_date = '2023-05-03', amount, 0)) AS `2023-05-03` , SUM(IF(order_date = '2023-05-04', amount, 0)) AS `2023-05-04` , SUM(IF(order_date = '2023-05-05', amount, 0)) AS `2023-05-05` FROM advanced.orders GROUP BY 1 ;3) orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)로 만들고 주문을 많이 해도 1로 처리합니다SELECT user_id , MAX(IF(order_date = '2023-05-01', 1, 0)) AS `2023-05-01` , MAX(IF(order_date = '2023-05-02', 1, 0)) AS `2023-05-02` , MAX(IF(order_date = '2023-05-03', 1, 0)) AS `2023-05-03` , MAX(IF(order_date = '2023-05-04', 1, 0)) AS `2023-05-04` , MAX(IF(order_date = '2023-05-05', 1, 0)) AS `2023-05-05` FROM advanced.orders GROUP BY 1 ;4) user_id = 32888이 카트 추가하기(click_cart)를 누를 때 어떤 음식(food_id)을 담았나요?WITH app_logs_info AS ( SELECT user_id , event_name , MAX(IF(event_param.key = 'firebase_screen', event_param.value.string_value, NULL)) AS firebase_screen , MAX(IF(event_param.key = 'food_id', event_param.value.int_value, NULL)) AS food_id FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param GROUP BY 1, 2 ) SELECT food_id FROM app_logs_info WHERE user_id = 32888 AND event_name = 'click_cart' ; 3. Funnel1) 일자별, 이벤트별 집계WITH app_logs_info AS ( SELECT user_id , event_date , event_timestamp , event_name , user_pseudo_id , event_param.key , MAX(IF(event_param.key = 'firebase_screen', event_param.value.string_value, NULL)) AS firebase_screen , MAX(IF(event_param.key = 'food_id', event_param.value.int_value, NULL)) AS food_id FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' AND event_name IN ('screen_view', 'click_payment') GROUP BY ALL ) , add_step_number AS ( SELECT event_date , DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_date_time , user_id , user_pseudo_id , CONCAT(event_name, '-', firebase_screen) AS event_name_with_screen , CASE CONCAT(event_name, '-', firebase_screen) WHEN 'screen_view-welcome' THEN 1 WHEN 'screen_view-home' THEN 2 WHEN 'screen_view-food_category' THEN 3 WHEN 'screen_view-restaurant' THEN 4 WHEN 'screen_view-cart' THEN 5 WHEN 'click_payment-cart' THEN 6 ELSE NULL END AS step_number FROM app_logs_info ) SELECT event_date , step_number , event_name_with_screen , COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM add_step_number WHERE step_number IS NOT NULL GROUP BY 1, 2, 3 ORDER BY 1, 2 ; 2) 집계 데이터 PIVOTWITH app_logs_info AS ( SELECT user_id , event_date , event_timestamp , event_name , user_pseudo_id , event_param.key , MAX(IF(event_param.key = 'firebase_screen', event_param.value.string_value, NULL)) AS firebase_screen , MAX(IF(event_param.key = 'food_id', event_param.value.int_value, NULL)) AS food_id FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' GROUP BY ALL ) , add_step_number AS ( SELECT event_date , DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_date_time , user_id , user_pseudo_id , CONCAT(event_name, '-', firebase_screen) AS event_name_with_screen , CASE CONCAT(event_name, '-', firebase_screen) WHEN 'screen_view-welcome' THEN 1 WHEN 'screen_view-home' THEN 2 WHEN 'screen_view-food_category' THEN 3 WHEN 'screen_view-restaurant' THEN 4 WHEN 'screen_view-cart' THEN 5 WHEN 'click_payment-cart' THEN 6 ELSE NULL END AS step_number FROM app_logs_info WHERE event_name IN ('screen_view', 'click_payment') ) , agg_user_cnt AS ( SELECT event_date , step_number , event_name_with_screen , COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM add_step_number WHERE step_number IS NOT NULL GROUP BY 1, 2, 3 ORDER BY 1, 2 ) SELECT event_date , MAX(IF(step_number = 1, user_cnt, NULL)) AS `screen_view-welcome` , MAX(IF(step_number = 2, user_cnt, NULL)) AS `screen_view-home` , MAX(IF(step_number = 3, user_cnt, NULL)) AS `screen_view-food_category` , MAX(IF(step_number = 4, user_cnt, NULL)) AS `screen_view-restaurant` , MAX(IF(step_number = 5, user_cnt, NULL)) AS `screen_view-cart` , MAX(IF(step_number = 6, user_cnt, NULL)) AS `click_payment-cart` FROM agg_user_cnt GROUP BY 1 ORDER BY 1 ;
-
미해결[C++과 언리얼로 만드는 MMORPG 게임 개발 시리즈] Part1: C++ 프로그래밍 입문
강의 마지막부분에 질문이 있습니다.
안녕하세요 루키스님 강의에 질문이 있어서 글 작성합니다. rsp에 16을 더해주는 이유에 대해서 정확히 이해를 하지 못했습니다. push를 2회 하면서 이미 rsp가 16이 더해진 상태로 있다고 생각을 하고 있는데왜 또다시 16을 더해준것인지 잘 이해가 안갑니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
결측치 문의
예제 데이터 프레임에서 결측치를 np.nan으로 적어주셨는데, 결측치를 무조건 이렇게 사용해야 하는건가요?
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[바짝스터디 1주차 과제] ARRAY, STRUCT 연습문제 / PIVOT 연습문제 / 퍼널 쿼리 연습문제
1. ARRAY, STRUCT 연습문제연습문제 1SELECT title , genre FROM `advanced.array_exercises` CROSS JOIN UNNEST(genres) AS genre 연습문제 2SELECT title , actor.actor , actor.character FROM `advanced.array_exercises` CROSS JOIN UNNEST(actors) AS actor 연습문제 3SELECT title , actor.actor AS actor , actor.character AS character , genre FROM `advanced.array_exercises` CROSS JOIN UNNEST(actors) AS actor CROSS JOIN UNNEST(genres) AS genre[메모]여기서 CROSS JOIN 다음 라인에 WHERE actor = 'Chris Evans' 이렇게 조건을 걸어줄 경우 오류가 발생한다. 오류는 실행 순서와 관련이 있다. 실행 순서: FROM -> JOIN -> SELECT따라서 SELECT 에서 알리아스로 이름 붙인 actor 가 아닌, CROSS JOIN 결과를 사용하여 조건을 만들어야 한다. => WHERE actor.actor = 'Chris Evans' 연습문제 4SELECT user_id , event_date , event_name , user_pseudo_id , parameter.key AS key , parameter.value.string_value AS string_value , parameter.value.int_value AS int_value FROM `inflearn-bigquery-437203.advanced.app_logs` CROSS JOIN UNNEST (event_params) AS parameter WHERE event_date = "2022-08-01" 2. PIVOT 연습문제연습문제 1SELECT order_date , SUM(IF(user_id = 1, amount, 0)) AS user_1 , SUM(IF(user_id = 2, amount, 0)) AS user_2 , SUM(IF(user_id = 3, amount, 0)) AS user_3 FROM `inflearn-bigquery-437203.advanced.orders` GROUP BY order_date ORDER BY order_date 연습문제 2SELECT user_id , SUM(IF(order_date= '2023-05-01', amount, 0)) AS `2023-05-01` , SUM(IF(order_date= '2023-05-02', amount, 0)) AS `2023-05-02` , SUM(IF(order_date= '2023-05-03', amount, 0)) AS `2023-05-03` , SUM(IF(order_date= '2023-05-04', amount, 0)) AS `2023-05-04` , SUM(IF(order_date= '2023-05-05', amount, 0)) AS `2023-05-05` FROM `inflearn-bigquery-437203.advanced.orders` GROUP BY user_id ORDER BY user_id[메모]알리아스로 컬럼명 지정할 때, 영어 제외하고 다른 문자열가 포함될 경우 → backtick (`) 으로 감싸준다. 연습문제 3SELECT user_id , MAX(IF(order_date= '2023-05-01', 1, 0)) AS `2023-05-01` , MAX(IF(order_date= '2023-05-02', 1, 0)) AS `2023-05-02` , MAX(IF(order_date= '2023-05-03', 1, 0)) AS `2023-05-03` , MAX(IF(order_date= '2023-05-04', 1, 0)) AS `2023-05-04` , MAX(IF(order_date= '2023-05-05', 1, 0)) AS `2023-05-05` FROM `inflearn-bigquery-437203.advanced.orders` GROUP BY user_id ORDER BY user_id 연습문제 4SELECT event_date , event_timestamp , event_name , user_id , user_pseudo_id , MAX(IF(params.key = 'firebase_screen', params.value.string_value, NULL)) AS firebase_screen , MAX(IF(params.key = 'food_id', params.value.int_value, NULL)) AS food_id , MAX(IF(params.key = 'session_id', params.value.string_value, NULL)) AS session_id FROM `inflearn-bigquery-437203.advanced.app_logs` CROSS JOIN UNNEST(event_params) AS params WHERE event_date = '2022-08-01' GROUP BY ALL 3. 퍼널 쿼리 연습문제연습문제 1: 각 퍼널별 유저 수 집계-- 퍼널 단계: 6 -- screen_view(welcome) -- screen_view(home) -- screen_view(food_category) -- screen_view(restaurant) -- screen_view(cart) -- click_payment(cart) WITH funnel AS ( SELECT CONCAT(event_name, '-', param.value.string_value) AS event_name_with_screen , CASE WHEN event_name = 'screen_view' AND param.value.string_value = 'welcome' THEN 1 WHEN event_name = 'screen_view' AND param.value.string_value = 'home' THEN 2 WHEN event_name = 'screen_view' AND param.value.string_value = 'food_category' THEN 3 WHEN event_name = 'screen_view' AND param.value.string_value = 'restaurant' THEN 4 WHEN event_name = 'screen_view' AND param.value.string_value = 'cart' THEN 5 WHEN event_name = 'click_payment' AND param.value.string_value = 'cart' THEN 6 END AS step_number , user_pseudo_id FROM `inflearn-bigquery-437203.advanced.app_logs` CROSS JOIN UNNEST(event_params) AS param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' AND event_name IN ('screen_view', 'click_payment') AND param.key = 'firebase_screen' AND param.value.string_value IN ('welcome', 'home', 'food_category', 'restaurant', 'cart') ) SELECT event_name_with_screen , MAX(step_number) AS step_number , COUNT(DISTINCT user_pseudo_id) AS cnt FROM funnel GROUP BY event_name_with_screen 연습문제 2: 일자별 각 퍼널의 유저 수 집계-- 퍼널 단계: 6 -- screen_view(welcome) -- screen_view(home) -- screen_view(food_category) -- screen_view(restaurant) -- screen_view(cart) -- click_payment(cart) WITH funnel AS ( SELECT event_date -- 날짜 컬럼 추가 , CONCAT(event_name, '-', param.value.string_value) AS event_name_with_screen , CASE WHEN event_name = 'screen_view' AND param.value.string_value = 'welcome' THEN 1 WHEN event_name = 'screen_view' AND param.value.string_value = 'home' THEN 2 WHEN event_name = 'screen_view' AND param.value.string_value = 'food_category' THEN 3 WHEN event_name = 'screen_view' AND param.value.string_value = 'restaurant' THEN 4 WHEN event_name = 'screen_view' AND param.value.string_value = 'cart' THEN 5 WHEN event_name = 'click_payment' AND param.value.string_value = 'cart' THEN 6 END AS step_number , user_pseudo_id FROM `inflearn-bigquery-437203.advanced.app_logs` CROSS JOIN UNNEST(event_params) AS param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' AND event_name IN ('screen_view', 'click_payment') AND param.key = 'firebase_screen' AND param.value.string_value IN ('welcome', 'home', 'food_category', 'restaurant', 'cart') ) SELECT event_date -- 날짜 컬럼 추가 , event_name_with_screen , MAX(step_number) AS step_number , COUNT(DISTINCT user_pseudo_id) AS cnt FROM funnel GROUP BY ALL ORDER BY event_date, step_number 연습문제 3: 일자별 각 퍼널의 유저 수 집계한 결과 → PIVOT 하기-- 퍼널 단계: 6 -- screen_view(welcome) -- screen_view(home) -- screen_view(food_category) -- screen_view(restaurant) -- screen_view(cart) -- click_payment(cart) WITH funnel AS ( SELECT event_date , CONCAT(event_name, '-', param.value.string_value) AS event_name_with_screen , CASE WHEN event_name = 'screen_view' AND param.value.string_value = 'welcome' THEN 1 WHEN event_name = 'screen_view' AND param.value.string_value = 'home' THEN 2 WHEN event_name = 'screen_view' AND param.value.string_value = 'food_category' THEN 3 WHEN event_name = 'screen_view' AND param.value.string_value = 'restaurant' THEN 4 WHEN event_name = 'screen_view' AND param.value.string_value = 'cart' THEN 5 WHEN event_name = 'click_payment' AND param.value.string_value = 'cart' THEN 6 END AS step_number , user_pseudo_id FROM `inflearn-bigquery-437203.advanced.app_logs` CROSS JOIN UNNEST(event_params) AS param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' AND event_name IN ('screen_view', 'click_payment') AND param.key = 'firebase_screen' AND param.value.string_value IN ('welcome', 'home', 'food_category', 'restaurant', 'cart') ), -- 일자별 각 퍼널의 유저수 집계 funnel_daily AS( SELECT event_date , event_name_with_screen , MAX(step_number) AS step_number , COUNT(DISTINCT user_pseudo_id) AS cnt FROM funnel GROUP BY ALL ORDER BY event_date, step_number ) -- 일자별 각 퍼널의 유저수 집계 -> 피벗하기 SELECT event_date , SUM(IF(event_name_with_screen = 'screen_view-welcome', cnt, 0)) AS `screen_view-welcome` , SUM(IF(event_name_with_screen = 'screen_view-home', cnt, 0)) AS `scree_view-home` , SUM(IF(event_name_with_screen = 'screen_view-food_category', cnt, 0)) AS `screen_view-food_category` , SUM(IF(event_name_with_screen = 'screen_view-restaurant', cnt, 0)) AS `screen_view-restaurant` , SUM(IF(event_name_with_screen = 'screen_view-cart', cnt, 0)) AS `screen_view-cart` , SUM(IF(event_name_with_screen = 'click_payment-cart', cnt, 0)) AS `click_payment-cart` FROM funnel_daily GROUP BY event_date ORDER BY event_date
-
미해결비전공자도 이해할 수 있는 CI/CD 입문·실전
[실습] 개인 프로젝트에서 많이 쓰는 CI/CD 구축 방법 - 2에서 fail..
[실습] 개인 프로젝트에서 많이 쓰는 CI/CD 구축 방법 - 2 에서 깃액션 배포할때 계속 이렇게 뜨는데 알려주세요 ㅠㅠㅠㅠㅠㅠㅠ 5번해봤는데 계속 저렇게뜹니다..
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 1주차 과제] ARRAY, STRUCT 연습 문제/ PIVOT 연습문제/ 퍼널 분석 연습 문제
1-4. Array, Struct 연습문제 (1~4번)연습문제1문제array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요 쿼리select title, genres2 from advanced.array_exercises cross join unnest(genres) as genres2 ;결과 연습문제2문제array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. 배우와 배역은 별도의 컬럼으로 나와야 합니다쿼리select title, actor.actor, actor.character from advanced.array_exercises cross join unnest(actors) as actor order by movie_id ;결과 연습문제3문제array_exercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르 (genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다쿼리select title, actor.actor, actor.character genre2 # array<string> from advanced.array_exercises cross join unnest (actors) as actor cross join unnest (genres) as genre order by movie_id ;결과 연습문제4문제앱 로그 데이터(app_logs)의 배열을 풀어주세요쿼리select user_id, event_date, event_name, user_pseudo_id, event_param.key as key , event_param.value.string_value as string_value , event_param.value.int_value as int_value from advanced.app_logs cross join unnest (event_params) as event_param where event_date = "2022-08-01" limit 10 ;결과 1-9. 퍼널 SQL 쿼리 작성하기연습문제1문제orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT해주세요. 날짜(order_date)를 행(Row)으로, user_id를 열(Column)으로 만들어야 합니다쿼리select order_date, sum(if(user_id = 1, amount, 0)) as user_1, sum(if(user_id = 2, amount, 0)) as user_2, sum(if(user_id = 3, amount, 0)) as user_3 from advanced.orders group by order_date order by 1 ;결과연습문제2문제orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)으로 만들어야 합니다쿼리select user_id, # 컬럼의 이름을 지정할때, 영어를 제외하고 backtick(`)사용 sum(if(order_date = "2023-05-01", amount, 0)) as `2023-05-01`, sum(if(order_date = "2023-05-02", amount, 0)) as `2023-05-02`, sum(if(order_date = "2023-05-03", amount, 0)) as `2023-05-03`, sum(if(order_date = "2023-05-04", amount, 0)) as `2023-05-04`, sum(if(order_date = "2023-05-05", amount, 0)) as `2023-05-05` from advanced.orders group by user_id order by 1 ;결과연습문제3문제orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)로 만들고 주문을 많이 해도 1로 처리합니다쿼리select user_id, max(if(order_date = "2023-05-01", 1, 0)) as `2023-05-01`, max(if(order_date = "2023-05-02", 1, 0)) as `2023-05-02`, max(if(order_date = "2023-05-03", 1, 0)) as `2023-05-03`, max(if(order_date = "2023-05-04", 1, 0)) as `2023-05-04`, max(if(order_date = "2023-05-05", 1, 0)) as `2023-05-05` from advanced.orders group by user_id order by 1 ;결과연습문제4문제앱 로그 데이터 배열 PIVOT하기 - user_id = 32888이 카트 추가하기(click_cart)를 누를때 어떤 음식(food_id)을 담았나요?쿼리select event_date, event_timestamp, event_name, user_id, user_pseudo_id, max(if(param.key = 'firebase_screen', param.value.string_value, null)) as firebase_screen, -- max(if(param.key = 'food_id', param.value.string_value, null)) as food_id, max(if(param.key = 'food_id', param.value.int_value, null)) as food_id, max(if(param.key = 'session_id', param.value.string_value, null)) as session_id from advanced.app_logs cross join unnest(event_params) as param where event_date = "2022-08-01" and user_id = 32888 and event_name = "click_cart" group by all limit 100 ; 결과퍼널 분석문제step_number별 count, 일자별 퍼널별 유저 수 쿼리쿼리with base as (select event_date, event_timestamp, event_name, user_id, user_pseudo_id, max(if(event_param.key = 'firebase_screen', event_param.value.string_value, null)) as firebase_screen, -- max(if(event_param.key = 'food_id', event_param.value.int_value, null)) as food_id, max(if(event_param.key = 'session_id', event_param.value.string_value, null)) as session_id from advanced.app_logs cross join unnest(event_params) as event_param where 1=1 and event_date between "2022-08-01" and "2022-08-18" group by all ), filter_event_and_concat_event_and_acreen AS ( -- event_name + screen select * except(event_name, firebase_screen, event_timestamp), concat(event_name, "-", firebase_screen) as event_name_with_screen, datetime(timestamp_micros(event_timestamp), "Asia/Seoul") as event_datetime from base where 1=1 and event_name in ("screen_view", "click_payment")) # 일자별로 퍼널별 유저 수 select -- distinct(event_name_with_screen) event_date, event_name_with_screen, case when event_name_with_screen = 'screen_view-welcome' then 1 when event_name_with_screen = 'screen_view-home' then 2 when event_name_with_screen = 'screen_view-food_category' then 3 when event_name_with_screen = 'screen_view-restaurant' then 4 when event_name_with_screen = 'screen_view-cart' then 5 when event_name_with_screen = 'click_payment-cart' then 6 else null end as step_number, count(distinct user_pseudo_id) as cnt from filter_event_and_concat_event_and_acreen group by all having step_number is not null order by event_date ;결과
-
해결됨iOS Clean Architecture & MVVM: RxSwift 완전 정복
강의 자료는 어디서 받을수 있나요?
강의에 사용되는 자료와 코드들은 어디서 받을 수 있나요?
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[바짝스터디 1주차 과제] ARRAY, STRUCT 연습 문제 / PIVOT 연습 문제 / 퍼널 쿼리 연습 문제
1. ARRAY, STRUCT 연습문제 연습 문제 1번# 1)array_exercises테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요 SELECT title, genre FROM `advanced.array_exercises` AS exercise CROSS JOIN UNNEST(genres) AS genre SELECT title, # 기존에 array_exercises에 저장되어 있던 컬럼 genre FROM `advanced.array_exercises` AS ae, UNNEST(genres) AS genre # ARRAY : 같은 타입의 여러 데이터를 저장하고 싶을 때 # ARRAY를 Flatten(평면화) => UNNEST # UNNEST를 할 때는 CROSS JOIN + UNNEST(ARRAY_COLUMN) # UNNEST(ARRAY_COLUMN) AS 새로운 이름 # SELECT 절에서 새로운 이름으로 시작한다. 기존의 ARRAY_COLUMN은 사용하지 않는다! 연습 문제 2번# 2) array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. 배우와 배역은 별도의 컬럼으로 나와야 합니다 SELECT title, actor.actor, actor.character -- FROM `advanced.array_exercises` AS ae, UNNEST(actors) AS actor FROM `advanced.array_exercises` AS ae CROSS JOIN UNNEST(actors) AS actor # actors = [STRUCT(STRING, STRING)] 연습 문제 3번# 3) array_exercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르(genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시 되어야 합니다 SELECT title, actor.actor, actor.character, genre FROM `advanced.array_exercises` AS ae ,UNNEST(actors) AS actor, UNNEST(genres) as genre -- FROM `advanced.array_exercises` AS ae -- CROSS JOIN UNNEST(actors) AS actor -- CROSS JOIN UNNEST(genres) as genre # 이 문제의 의도 : UNNEST를 2번 연속 사용할 수 있다. # CROSS JOIN => JOIN 연속 2번과 맥락은 동일한데, UNNEST라는 것이 어색할 수 있었다 # 데이터의 중복이 어느정도 생기는데, 그것은 어쩔 수 없는 이슈(CROSS JOIN) -- FROM `advanced.array_exercises` AS ae -- CROSS JOIN UNNEST(actors) AS actor, UNNEST(genres) as genre SELECT title, actor.actor, actor.character, genre FROM `advanced.array_exercises` AS ae ,UNNEST(actors) AS actor, UNNEST(genres) as genre -- FROM `advanced.array_exercises` AS ae -- CROSS JOIN UNNEST(actors) AS actor -- CROSS JOIN UNNEST(genres) as genre # 이 문제의 의도 : UNNEST를 2번 연속 사용할 수 있다. # CROSS JOIN => JOIN 연속 2번과 맥락은 동일한데, UNNEST라는 것이 어색할 수 있었다 # 데이터의 중복이 어느정도 생기는데, 그것은 어쩔 수 없는 이슈(CROSS JOIN) -- FROM `advanced.array_exercises` AS ae -- CROSS JOIN UNNEST(actors) AS actor, UNNEST(genres) as genre WHERE actor.actor = 'Chris Evans' AND genre = 'Action' -- WHERE actor = 'Chris Evans' (X) # 실행 순서 : FROM -> JOIN -> SELECT # actors : ARRAY<STRUCT> => UNNEST => STRUCT # genres : ARRAY<STRING> => STRING 연습 문제 4번# 4) 앱 로그 데이터(app_logs)의 배열을 풀어주세요 SELECT event_date, event_timestamp, event_name, event_param.key as key, event_param.value as value, event_param.value.string_value as string_value, event_param.value.int_value as int_value, -- event_params, user_id, event_param FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date ='2022-08-01' 2. PIVOTPIVOT 연습 문제 1## SubQuery 방식 SELECT order_date, SUM(IF(user_id = 1, sum_of_amount, NULL)) AS user_1, SUM(IF(user_id = 2, sum_of_amount, NULL)) AS user_2, SUM(IF(user_id = 3, sum_of_amount, NULL)) AS user_3 -- MAX를 써도 동일한 결과 값이 나옴 -- 그룹화 할때 값이 하나밖에 없음 FROM ( SELECT order_date, user_id, # Amount의 합 SUM(amount) AS sum_of_amount FROM advanced.orders GROUP BY order_date, user_id -- ORDER BY order_date ) GROUP BY order_date ORDER BY order_date PIVOT 연습 문제 2# ANY_VALUE 활용 -- ANY_VALUE : 그룹화 할 대상 중에 임의의 값을 선택한다 (NULL)을 제외하고 -- ANY_VALUE에선 나머지 값들이 NULL 이거나 확정적으로 이 값이 나올 것이다 기대할 때 사용한다 SELECT user_id, ANY_VALUE(IF(order_date = PARSE_DATE('%Y-%m-%d', '2023-05-01'), amount, NULL)) AS `2023-05-01`, ANY_VALUE(IF(order_date = date('2023-05-02'), amount, NULL)) AS `2023-05-02`, ANY_VALUE(IF(order_date = date('2023-05-03'), amount, NULL)) AS `2023-05-03`, ANY_VALUE(IF(order_date = date('2023-05-04'), amount, NULL)) AS `2023-05-04`, ANY_VALUE(IF(order_date = date('2023-05-05'), amount, NULL)) AS `2023-05-05` FROM `advanced.orders` GROUP BY user_id ORDER BY user_id PIVOT 연습 문제 3# 3) orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 PIVOT 해주세요.user_id를 행(Row)으로, order_date를 열(Column)로 만들고 주문을 많이 해도 1로 처리합니다 SELECT user_id, # amount 대신 1 이라고 표시. IF 문 안에 TRUE 일 때의 값이 항상 특정 컬럼이 아니라 1이라고 할 수도 있음(유무에 따라서) MAX(IF(order_date = PARSE_DATE('%Y-%m-%d', '2023-05-01'), 1, 0)) AS `2023-05-01`, MAX(IF(order_date = date('2023-05-02'), 1, 0)) AS `2023-05-02`, MAX(IF(order_date = date('2023-05-03'), 1, 0)) AS `2023-05-03`, MAX(IF(order_date = date('2023-05-04'), 1, 0)) AS `2023-05-04`, MAX(IF(order_date = date('2023-05-05'), 1, 0)) AS `2023-05-05` FROM `advanced.orders` GROUP BY user_id PIVOT 연습 문제 4 앱 로그 데이터 배열 PIVOT 하기WITH base AS ( SELECT event_date, event_name, user_id, user_pseudo_id, event_timestamp, MAX(IF(param.key = 'firebase_screen', param.value.string_value, NULL)) AS firebase_screen, MAX(IF(param.key = 'food_id', param.value.int_value, NULL)) AS food_id, MAX(IF(param.key = 'session_id', param.value.string_value, NULL)) AS session_id FROM `advanced.app_logs` CROSS JOIN UNNEST(event_params) AS param GROUP BY ALL -- WHERE event_name ='click_cart' ORDER BY user_pseudo_id LIMIT 100 ) SELECT event_date, COUNT(user_id) AS user_cnt FROM base WHERE event_name ='click_cart' GROUP BY event_date ORDER BY event_date 3. 퍼널 분석 -- event_name + screen (필요한 이벤트만 WHERE 조건에 걸어서 사용) -- step_number + COUNT WITH base AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, platform, -- param MAX(IF(param.key = 'firebase_screen', param.value.string_value, NULL)) AS firebase_screen, MAX(IF(param.key = 'food_id', param.value.int_value, NULL)) AS food_id, MAX(IF(param.key = 'session_id', param.value.string_value, NULL)) AS session_id, FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS param WHERE event_date = '2022-08-01' GROUP BY ALL -- LIMIT 100 ), filter_event_and_concat_event_and_screen AS ( SELECT * EXCEPT(event_name, firebase_screen), CONCAT(event_name, "-", firebase_screen) AS event_name_with_screen FROM base WHERE event_name IN ("screen_view", "click_payment") ) SELECT * FROM filter_event_and_concat_event_and_screen 최종 RESULT# 일자 상관 없이 퍼널의 유저 수를 집계한 쿼리 => 일자별로 하기 위해 event_date 추가WITH base AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, platform, -- param MAX(IF(param.key = 'firebase_screen', param.value.string_value, NULL)) AS firebase_screen, MAX(IF(param.key = 'session_id', param.value.string_value, NULL)) AS session_id, FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS param WHERE -- event_date = '2022-08-01' # 적은 데이터로 쿼리를 작성하기 위해 만들어둔 조건 event_date BETWEEN '2022-08-01' AND '2022-08-18' GROUP BY ALL ), filter_event_and_concat_event_and_screen AS ( SELECT * EXCEPT(event_name, firebase_screen), CONCAT(event_name, "-", firebase_screen) AS event_name_with_screen, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime FROM base WHERE event_name IN ("screen_view", "click_payment") ) -- step_number + COUNT -- step_number : CASE WHEN 을 사용해 숫자 지정, 조건문을 여러 개 하고싶을 때 사용하는 함수 # 일자 상관 없이 퍼널의 유저 수를 집계한 쿼리 => 일자별로 하기 위해 event_date 추가 SELECT event_date, # 일자별로 퍼널별 유저 수 쿼리 event_name_with_screen, -- event_name_with_screen, -- event_datetime, user_pseudo_id, CASE WHEN event_name_with_screen = 'screen_view-welcome' THEN 1 WHEN event_name_with_screen = 'screen_view-home' THEN 2 WHEN event_name_with_screen = 'screen_view-food_category' THEN 3 WHEN event_name_with_screen = 'screen_view-restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view-cart' THEN 5 WHEN event_name_with_screen = 'click_payment-cart' THEN 6 ELSE NULL END AS step_number, COUNT(DISTINCT user_pseudo_id) AS CNT FROM filter_event_and_concat_event_and_screen GROUP BY ALL HAVING step_number IS NOT NULL ORDER BY event_date
-
미해결자바 개발자를 위한 코틀린 입문(Java to Kotlin Starter Guide)
update 함수를 만든다는게 어떤 의미인지 예시가 궁금합니다!
안녕하세요, 오랜만에 흥미로운 강의를 알게되어 주말동안 강의를 몰아보다보니 9강까지 듣게 되었네요. 23분 59초 정도에 setter를 지양하기 떄문에 custom setter를 잘 사용하지 않고, update함수를 만들어 사용한다 라는 내용에 예시가 있다면 알 수 있을까요? java 프로젝트를 활용할 때 setter를 커스텀하게 수정해서 쓰는 경우가 아주 간혹 값이 업데이트 될 때 다른 필드를 함께 업데이트 해야하는 케이스들 때문에 사용했던 기억이 있는데, setter를 사용하지 않고 update를 사용한다는게 어떤 말씀이신지 조금 더 상세히 알려주시면 감사하겠습니다!
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[ 인프런 빅쿼리 빠짝스터디 1주차 ] ARRAY, STRUCT 연습 문제 / PIVOT 연습 문제 / 퍼널 쿼리 연습 문제
1. ARRAY, STRUCT1) array_exercises 테이블에서 각 영화(title)별로 장르(genres)를 UNNEST해서 보여주세요SELECT title, genre FROM advanced.array_exercises CROSS JOIN UNNEST(genres) AS genre2) array_exercises 테이블에서 각 영화(title)별로 배우(actor)와 배역(character)을 보여주세요. (배우와 배역은 별도의 컬럼으로 나와야 합니다)SELECT title, actor.actor, actor.character FROM advanced.array_exercises CROSS JOIN UNNEST(actors) AS actor3) array_exercises 테이블에서 각 영화(title)별로 배우(actor), 배역(character), 장르(genre)를 출력하세요. 한 Row에 배우, 배역, 장르가 모두 표시되어야 합니다SELECT title, actor.actor, actor.character, genre FROM advanced.array_exercises CROSS JOIN UNNEST(actors) AS actor CROSS JOIN UNNEST(genres) AS genre4) 앱 로그 데이터(app_logs)의 배열을 풀어주세요SELECT user_id, event_date, event_name, user_pseudo_id, event_param.key AS key, event_param.value.string_value AS string_value, event_param.value.int_value AS int_value FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date = '2022-08-01'2. PIVOT1) orders 테이블에서 유저(user_id)별로 주문 금액(amount)의 합계를 PIVOT해주세요. 날짜(order_date)를 행(Row)으로, user_id를 열(Column)으로 만들어야 합니다SELECT order_date, SUM(IF(user_id = 1, amount, 0)) AS user_1, SUM(IF(user_id = 2, amount, 0)) AS user_2, SUM(IF(user_id = 3, amount, 0)) AS user_3, FROM advanced.orders GROUP BY order_date ORDER BY order_date 2) orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)으로 만들어야 합니다-- 2) orders 테이블에서 날짜(order_date)별로 유저들의 주문 금액(amount)의 합계를 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)으로 만들어야 합니다 SELECT user_id, SUM(IF(order_date = '2023-05-01', amount, 0)) AS `2023-05-01`, SUM(IF(order_date = '2023-05-02', amount, 0)) AS `2023-05-02`, SUM(IF(order_date = '2023-05-03', amount, 0)) AS `2023-05-03`, SUM(IF(order_date = '2023-05-04', amount, 0)) AS `2023-05-04`, SUM(IF(order_date = '2023-05-05', amount, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY user_id ORDER BY user_id3) orders 테이블에서 사용자(user_id)별, 날짜(order_date)별로 주문이 있다면 1, 없다면 0으로 PIVOT 해주세요. user_id를 행(Row)으로, order_date를 열(Column)로 만들고 주문을 많이 해도 1로 처리합니다SELECT user_id, MAX(IF(order_date = '2023-05-01', 1, 0)) AS `2023-05-01`, MAX(IF(order_date = '2023-05-02', 1, 0)) AS `2023-05-02`, MAX(IF(order_date = '2023-05-03', 1, 0)) AS `2023-05-03`, MAX(IF(order_date = '2023-05-04', 1, 0)) AS `2023-05-04`, MAX(IF(order_date = '2023-05-05', 1, 0)) AS `2023-05-05`, FROM advanced.orders GROUP BY user_id ORDER BY user_id4) 앱 로그 데이터 배열 PIVOT하기# 앱 로그 PIVOT # 쿼리를 작성하는 목표, 확인할 지표 : user_id = 32888이 카트 추가하기(click_cart)를 누를때 어떤 음식(food_id)을 담았나요? # 쿼리 계산 방법 : UNNEST -> PIVOT # 데이터의 기간 : X # 사용할 테이블 : app_logs # Join KEY : X # 데이터 특징: -- event_params ARRAY, STRUCT / event_params.value ARRAY, STRUCT WITH base AS ( SELECT user_id, event_date, event_name, user_pseudo_id, event_param.key AS key, event_param.value.string_value AS string_value, event_param.value.int_value AS int_value FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param ) SELECT user_id, event_date, event_name, user_pseudo_id, MAX(IF(key = 'firebase_screen', string_value, NULL)) AS firebase_screen, MAX(IF(key = 'food_id', int_value, NULL)) AS food_id, MAX(IF(key = 'session_id', string_value, NULL)) AS session_id FROM base WHERE user_id = 32888 AND event_name = 'click_cart' GROUP BY ALL3. 퍼널WITH base AS ( SELECT event_date, event_timestamp, event_name, user_id, user_pseudo_id, platform, MAX(IF(event_param.key = 'firebase_screen', event_param.value.string_value, NULL)) AS firebase_screen, MAX(IF(event_param.key = 'session_id', event_param.value.string_value, NULL)) AS session_id FROM advanced.app_logs CROSS JOIN UNNEST(event_params) AS event_param WHERE event_date BETWEEN '2022-08-01' AND '2022-08-18' GROUP BY ALL ), filter_event_and_concat_event_and_screen AS ( SELECT * EXCEPT(event_name, firebase_screen, event_timestamp), CONCAT(event_name, "-", firebase_screen) AS event_name_with_screen, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime FROM base WHERE event_name IN ('screen_view', 'click_payment') ), daily_event_summary AS ( SELECT event_date, # 일자별로 퍼널별 유저 수 쿼리 event_name_with_screen, CASE WHEN event_name_with_screen = 'screen_view-welcome' THEN 1 WHEN event_name_with_screen = 'screen_view-home' THEN 2 WHEN event_name_with_screen = 'screen_view-food_category' THEN 3 WHEN event_name_with_screen = 'screen_view-restaurant' THEN 4 WHEN event_name_with_screen = 'screen_view-cart' THEN 5 WHEN event_name_with_screen = 'click_payment-cart' THEN 6 ELSE NULL END AS step_number, COUNT(DISTINCT user_pseudo_id) AS cnt FROM filter_event_and_concat_event_and_screen GROUP BY ALL HAVING step_number IS NOT NULL ) -- 집계한 데이터 PIVOT SELECT event_date, MAX(IF(event_name_with_screen = 'screen_view-welcome', cnt, 0)) AS screen_view_welcome, MAX(IF(event_name_with_screen = 'screen_view-home', cnt, 0)) AS screen_view_home, MAX(IF(event_name_with_screen = 'screen_view-food_category', cnt, 0)) AS screen_view_food_category, MAX(IF(event_name_with_screen = 'screen_view-restaurant', cnt, 0)) AS screen_view_restaurant, MAX(IF(event_name_with_screen = 'screen_view-cart', cnt, 0)) AS screen_view_cart, MAX(IF(event_name_with_screen = 'click_payment-cart', cnt, 0)) AS click_payment_cart FROM daily_event_summary GROUP BY ALL ORDER BY event_date