묻고 답해요
156만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
섹션 6. Partial Diffentiation 예시
12 page 2번째 문재에서 x1 에 대해 미분할 때 log(x2) 항은 사라져야하는 것이 맞죠?그리고 x2 에 대해 미분할 때는 sin(x1) 항이 사라져야하는 것이 맞죠?
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
BackPropagation 질문입니다
오차 역전파가 작동하기 위해서는 결국 마지막 layer의 가중치 (w)값을 알아야 하는 거 같은데 마지막 layer의 가중치는 어떻게 구하나요?
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
RMSProp 관련 질문입니다.
안녕하세요! 섹션 9에서 AdaGrad, RMSProp 강의를 보다 궁금한 점이 생겨 질문드립니다. 제가 이해한 바로는, RMSProp은 학습이 잘 안되었음에도 t가 커질수록 $G_t$가 커지는 문제를 최대한 막는 방법이라고 이해했습니다. $G_t = \gamma G_{t-1} + (1 - \gamma)g_t^2$그런데 위 식대로라면 미분값($g_t$)이 커질때 오히려 $G_t$가 감소할수도 있을 것 같은데RMSProp은 AdaGrad와 달리 learning_rate가 커지는 쪽으로도 조절될 수 있도록 한 것인가요? 만약 맞다면 제가 알기로는 learning_rate는 t에 따라 감소하도록 하는 것이 일반적이라고 알고 있는데RMSProp에서 이렇게하면 학습에서 어떤 이점이 있는 것인지 궁금합니다.
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Google Drive 에서 Colaboratory 항목이 안보이는 경우
연결할 앱 더보기에서 검색해서 연결을 해주면 됩니다
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
파이토치와 비교하며 Numpy 라이브러리 사용법 익히기2 질문입니다.
약 11분 경에 행렬 곱셈을 설명하는 부분에서"앞 행렬의 행의 갯수와 뒷 행렬의 열의 갯수가 같아야 행렬간 곱셈이 가능하다"고 되어있는데 제가 알기로는 (n, k) @ (k, m) = (n, m) 이어서앞 행렬의 열의 갯수와 뒷 행렬의 행의 갯수가 같아야 행렬 곱셈이 가능하다고 알고 있습니다.제가 알고 있는게 맞을까요? 검색해봐도 설명이 이렇게 나와서 어느것이 맞는지 질문드립니다.
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
LLM 용어 정리 - 온도(Temperature)
"LLM 용어 정리 - 온도(Temperature)"이 강의는 강의자료 제공이 안되었나요?강의자료 압축파일에 이 파일은 안보여서 질문합니다. 감사합니다.
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
conda 환경에서 autotrain-advanced
pip 말고 conda 가상환경에서 작업을 진행하고 싶은데, conda 가상환경에서 autotrain-advanced를 사용하려면 어떻게 해야하나요?
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
regression 문제에 대한 결과 시각화
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.강사님 안녕하세요. t-SNE 수업에 대하여 궁금한점이 있습니다.강의에서는 classification 문제에 대한 시각화를 알려 주셨는데요, 혹시 regression 에 대해서도 t-SNE를 적용할 수 있을지 궁금합니다. 만약 불가능 하다면, t-SNE 이외에 활용할 수 있는 다른 방법이 있을지 궁금합니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
Loss function 관련하여 질문드립니다.
강사님 안녕하세요. test loss 및 validation loss 관련하여 질문드립니다. train loss와 validation loss 플랏을 보고, 이 모델이 잘 학습이 되었는지 어떻게 판단해야 하는지가 궁금하여 질문드리게 되었습니다.강의 코드를 활용하여 학습하고자 하는 데이터에 적용해 보았습니다. 같은 데이터여도, 모델을 어떻게 구성하는지에 따라 에폭에 따른 loss 값이 큰 차이를 보였습니다. Case 1) 초기 epoch의 validation loss가 train loss보다 낮은 경우Case 2 ) validation loss와 train loss의 차이가 큰 경우Case 3) Validation loss가 감소하는 형태를 띄나, 크게 fluctuation 할 경우Case 4) Validation loss가 크게 fluctuation하며, 감소하는 형태가 아닌 경우 (증가 -> 감소)말씀드린 4가지 case 경우 모두, 최종적으로 loss 값 자체는 낮게 나왔습니다.하지만 제가 이상적이라고 생각한 loss 곡선에는 모두 벗어나는것 같아서, 위 형태들도 학습이 잘 되었다고 판단할 수 있을지 궁금하여 질문드립니다! 감사합니다.
-
미해결[PyTorch] 쉽고 빠르게 배우는 NLP
batch size 질문이 있습니다!
안녕하세요. 좋은 강의 열어주셔서 감사합니다.batch size를 크게할 경우 학습속도가 더 빨라질것 같은데, 맞나요? batch size와 모델 성능과의 상관관계도 있을까요?
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
early stopping 코드 문의
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. if val_loss < early_stopping_loss: torch.save(resnet.state_dict(), PATH) early_stopping_train_loss = train_loss early_stopping_val_loss = val_loss early_stopping_epoch = epoch 강사님 안녕하세요.위 코드에 궁금한 점이 있어서 질문드립니다.위 코드의 4번째 줄에서 아래와 같이 early_stopping_loss 변수를 업데이트 해줘야 하는게 아닌지 궁금합니다.early_stopping_loss = val_loss지금 코드 상으로는 early_stopping_loss가 업데이트 되는 부분이 없어보여서요. 지금 코드로는 모든 epoch에서 if 문에 들어가는것이 아닐지 질문드립니다! 감사합니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
예측 그래프
예측 그래프가 이렇게 나오는데, 뭐가 문제인지를 모르겠어요... 도와주세요...
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
데이터 불균형
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 안녕하세요. 데이터 불균형 수업 관련하여 질문드립니다. 수업중에 알려주신 예시는 classification 문제에서의 데이터 불균형 해결 방법을 알려주셨는데요,혹시 regression 문제에서도 데이터 불균형 해결이 필요한것이 맞을까요? (예를들어 신장(키) 학습 시 평균 키를 가지는 샘플이 많은 경우) regression 문제에서 데이터 불균형이 있을 경우, 어떤 방법으로 해결할 수 있을지 궁금합니다!감사합니다.
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
8강 전이 학습 질문
전이 학습을 하겠다는것은 이전에 학습한 weight를 이용하겠다는 의미로 알고 있는데요 맨앞에 있는 conv1을 수정하게 되면 모델 파라메터랑 weight랑 안맞지 않나요? 그리고 동결 시키지 않으면 결국 기존 weight를 무시하고 처음부터 다시 학습 할꺼같은데 해당 예제에서 어떻게 기존 weight를 활용하게 되는것인지 궁금합니다.
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
파인튜닝 GPU 사용
autotrain-advanced를 사용하여 파인튜닝 할때 리눅스 서버에 gpu를 사용하려면 어떻게 해야하나요?
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
파인튜닝 중 학습 중지
파인튜닝을 진행하다가 어떠한 이유로 서버가 꺼진다거나, 중간에 모델을 확인하고 싶어서 학습을 중단하고 싶을때, 현재까지 학습된 내용을 저장하려면 어떻게 해야할까요? 예를들어 학습도중 서버가 중단되어 학습이 멈춰버리면 현재까지 학습된 내용에서 이어서 학습을 하고싶으면 어떻게해야하는지 궁금합니다.
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
autotrain-advanced install 에러
!pip install -q autotrain-advanced를 통해서 autotrain-advanced를 설치하려고 하면 다음과 같은 에러가 뜨는데 어떻게 해결해야 하나요?ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. lida 0.0.10 requires kaleido, which is not installed. llmx 0.0.15a0 requires cohere, which is not installed. llmx 0.0.15a0 requires openai, which is not installed. tensorflow-metadata 1.14.0 requires protobuf<4.21,>=3.20.3, but you have protobuf 4.23.4 which is incompatible. tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.9.0 which is incompatible. !autotrain llm --train \ --project_name "llama2-korquad-finetuning-da" \ --model "TinyPixel/Llama-2-7B-bf16-sharded" \ --data_path "data" \ --text_column "text" \ --use_peft \ --use_int4 \ --learning_rate 2e-4 \ --train_batch_size 8 \ --num_train_epochs 40 \ --trainer sft \ --model_max_length 256이 부분에서는 다음과 같은 에러가 나옵니다. usage: autotrain <command> [<args>] AutoTrain advanced CLI: error: unrecognized arguments: --use_peft --use_int4
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
llama 2 파인튜닝 Maximum length, Temperature
안녕하세요.저는 현재 llama2 모델을 KorQuad 데이터셋을 이용하여 파인튜닝하는 실습을 진행중에 있습니다.파인튜닝 후에 궁금한게 생겼는데, 강의에서 처럼 KorQuad 데이터셋을 이용하여 llama2 모델을 파인튜닝을 한 뒤에 Chat GPT API 처럼 Maximum length 나 Temperature 등을 파라미터로 넣어서 답변의 길이나 Temperature 를 조절 할 수 있을까요?
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
파인 튜닝 Prompt
이번 강의의 다음 코드에서 왜 prompt 의 instruction 과 response 앞에 ### 을 넣어주는건가요? # 빠른 학습을 위해 20개만 추출 num_items = 20 final_prompt_list = [] for idx, (question, answer) in enumerate(refined_dict.items()): if idx >= num_items: break prompt = f"Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {question} ### Response: {answer}" print(idx, prompt) prompt_dict = {} prompt_dict['text'] = prompt final_prompt_list.append(prompt_dict)
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
채팅 모델이 아닌 자동완성 모델 파인튜닝
LLama2 모델을 이용하여 특정 분야의 리포트를 작성해주는 모델로 파인튜닝 하고 싶습니다.(Chat GPT 의 complete 모델 처럼)너무 막연한 질문이긴 하지만..이때 필요한 데이터 셋의 형태는 어떤 형태이며, 어떤 모델을 어떤식으로 파인튜닝을 진행해야하는지 가이드를 주실 수 있을까요?예를들어 제가 원하는 모델은 input 으로 "안녕하세요. 이번 보고서" 라는 텍스트를 넣으면 output 으로 "에서는 다음과 같은 내용을 다룰예정입니다." 의 텍스트가 나오는 것 입니다.input 텍스트를 넣으면 input 텍스트 이후에 올 수 있는 특정 분야에 관련된 텍스트를 자동으로 완성해주는 모델을 만들기 위해서 어떤식으로 접근해야 할까요?