묻고 답해요
156만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결노코드 자동화 입문부터 실전까지: n8n 완전정복 (한국 최초 n8n 앰버서더 직강)
35강 유튜브 트랜스크립트 관련해서 질문
문제 / 오류 / 질문에 대해 설명해 주세요 35강 유튜브 트랜스크립트 관련해서 질문이 있습니다. 지금 클라우드에서 강의 자료 json을 넣으면 노드가 없다고 나오는데 이거 어떻게 대처하면 될까요? 초보입니다 ! 오류 메시지가 있다면 작성해 주세요 사용 중인 워크플로우를 공유해 주세요 n8n 설치 정보 안내 n8n 버전:데이터베이스 종류 (기본값: SQLite):n8n 실행 프로세스 설정 (기본값: own, main):n8n 실행 방식 (예: Docker, npm, n8n cloud, 데스크탑 앱 등): n8n cloud운영 체제:
-
미해결LangGraph를 활용한 AI Agent 개발 (feat. MCP)
PDF 청킹 문의
안녕하세요. 강의 잘 수강하고 있습니다.자체적으로 텍스트, 표, 시계열꺽은선그래프로 주로 구성된 pdf를 임베딩해서 RAG 기반의 LLM 서비스를 만들어 보고 싶은데요표의 경우는 md 파일을 txt로 변환해서 저장하는 방법을 잘 알려주셨습니다만, 혹시 꺾은선그래프를 이미지처럼 저장해서 서비스에 활용할 수 있는 방법이 있을까요? 참고할만한 기술이나 좋은 아이디어 있으면 공유 혹은 조언해주시면 감사하겠습니다.
-
미해결AI 에이전트로 구현하는 RAG 시스템(w. LangGraph)
안녕하세요 후속강의 듣고 싶은데, 비용이 부담되어서..
혹시 할인계획이 있으신지요?
-
미해결노코드 자동화 입문부터 실전까지: n8n 완전정복 (한국 최초 n8n 앰버서더 직강)
34강에서 진행시 fetch transcript에서 결과값이 자료가없습니다.
공유해주신것을 사용해보았는데요 format에서 정의되지 않는다 이렇게 나오길래 워크플로우 실행을 제외해봤스니다 그결과 fetch transcrip에서 자료가 없는걸로 확인되는데요 이경우 어떻게 하면 좋을까요?
-
미해결graphRAG - Neo4J로 구현하는 지식 그래프 기반 RAG 시스템 (feat. LangChain)
AuraDB 연동 안되는 현상 질문
vscode에서 uv로 가상환경 생성후 .env 파일에서# Neo4J 설정 - AuraDB NEO4J_URI=neo4j+s://{id}.databases.neo4j.io NEO4J_USERNAME=neo4j NEO4J_PASSWORD={PASSWORD} NEO4J_DATABASE=neo4j해당 방식 적용 후, AuraDB 연동을 해도 적용이 안되고 아래와 같이 에러가 뜹니다. ValueError: Could not connect to Neo4j database. Please ensure that the url is correct 해결책 문의 드립니다. P.S colab에서는 올려주신 KG_P1_01_neo4j_Introduction.ipynb 실행하니 동작하네요. 왜 저의 로컬에서는 이런 현상이 일어나는 걸까요?
-
미해결Spring AI 실전 가이드: RAG 챗봇 만들기
1
1
-
미해결노코드 자동화 입문부터 실전까지: n8n 완전정복 (한국 최초 n8n 앰버서더 직강)
재생오류
재생에 문제가 생겼어요새로고침 후에도 문제가 지속될 경우 고객센터로 문의해주세요. (code: 7001) 이렇게 나옵니다.
-
해결됨Spring WebFlux + LLM 실전 구현
다음 강의는 언제 나올까요?
안녕하세요강의 잘 듣고있습니다. 혹시 다음 강의 일정 계획이 나온게 있을까요 ?
-
해결됨노코드 자동화 입문부터 실전까지: n8n 완전정복 (한국 최초 n8n 앰버서더 직강)
섹션 4번은 실습 시작파일이 따로 존재하나요?
문제 / 오류 / 질문에 대해 설명해 주세요 오류 메시지가 있다면 작성해 주세요 사용 중인 워크플로우를 공유해 주세요 궁금합니다! n8n 설치 정보 안내 n8n 버전:데이터베이스 종류 (기본값: SQLite):n8n 실행 프로세스 설정 (기본값: own, main):n8n 실행 방식 (예: Docker, npm, n8n cloud, 데스크탑 앱 등):운영 체제:
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
챗봇 생성시 에러
안녕하세요, gemini를 이용해서 챗봇 생성중에 있습니다.그런데 하기와 같이 챗봇을 llm과 연동하는 중에 에러가 계속 발생합니다.gpt한테 계속 물어가면서 에러잡고있는데 계속 동일한 에러만 나오네요. ㅠ어떻게 개선할 수 있을까요? 조언부탁드립니다. 감사합니다.코드)import streamlit as st from langchain import hub from dotenv import load_dotenv from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain_pinecone import PineconeVectorStore from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains import RetrievalQA from langchain.prompts import ChatPromptTemplate st.set_page_config(page_title="영향분석 챗봇", page_icon="★") st.title("영향분석 챗봇") st.caption("System 변경 영향 분석") load_dotenv() # 세션 상태에 메시지 리스트가 없으면 초기화 if 'message_list' not in st.session_state: st.session_state.message_list = [] # 이전 메시지 출력 for message in st.session_state.message_list: with st.chat_message(message["role"]): st.write(message["content"]) def get_ai_message(user_message): try: # 입력 메시지 확인 if not isinstance(user_message, str) or not user_message.strip(): return "질문이 비어 있습니다. 유효한 질문을 입력해 주세요." print(f"user_message: {user_message}") # user_message의 내용 출력 print(f"user_message length: {len(user_message)}") # 문자열 길이 출력 print(f"user_message type: {type(user_message)}") # 타입 출력 # Google Generative AI Embeddings 모델 초기화 embedding = GoogleGenerativeAIEmbeddings(model='models/gemini-embedding-exp-03-07') index_name = 'uml-index' database = PineconeVectorStore.from_existing_index(index_name=index_name, embedding=embedding) llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash") prompt_template = hub.pull("rlm/rag-prompt") retriever = database.as_retriever(search_kwargs={'k': 4}) # RetrievalQA 인스턴스 생성 qa_chain = RetrievalQA.from_chain_type(llm, retriever=retriever, chain_type_kwargs={"prompt": prompt_template}) dictionary = ["External Entity -> actor"] prompt = ChatPromptTemplate.from_template(f""" 사용자의 질문을 보고, 우리의 사전을 참고해서 사용자의 질문을 변경해주세요. 만약 변경할 필요가 없다고 판단된다면, 사용자의 질문을 변경하지 않아도 됩니다. 그런 경우에는 질문만 리턴해주세요. 사전 : {dictionary} 질문 : {{question}} """) dictionary_chain = prompt | llm uml_chain = {"query": dictionary_chain} | qa_chain ai_message = uml_chain.invoke({"question": user_message}) return ai_message except Exception as e: print(f"오류 발생: {repr(e)}") # 오류 메시지 출력 print(f"입력된 user_message: {user_message}") # 오류 발생 시 입력된 메시지 출력 return f"오류가 발생했습니다: {repr(e)}" # 사용자 입력 처리 if user_question := st.chat_input(placeholder="CR 내용을 첨부해주세요"): with st.chat_message("user"): st.write(f"사용자 질문: {user_question}") st.session_state.message_list.append({"role": "user", "content": user_question}) ai_message = get_ai_message(user_question) with st.chat_message("AI"): st.write(ai_message) st.session_state.message_list.append({"role": "AI", "content": ai_message}) 에러)user_message: 시스템에 연결된 External Entity를 알려주세요user_message length: 31user_message type: <class 'str'>오류 발생: GoogleGenerativeAIError('Error embedding content: bad argument type for built-in operation')입력된 user_message: 시스템에 연결된 External Entity를 알려주세요
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
pinecone 임포트 부분이 에러가발생합니다
파이썬 버전 3.10.11입니다윈도우 vscode에서 테스트해보고 있어요
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
PineconeApiException 어떻게 해결하나요?
13번째 동영상 들으면서 따라하는 중이고 OpenAI API 사용 중인데, 아래 코드만 돌리면,PineconeApiException HTTP response body: {"code":11,"message":"Error, message length too large: found 15431073 bytes, the limit is: 4194304 bytes","details":[]} 이러한 에러가 뜹니다.이를 해결하기 위해서, chunk_size = 10, chunk_overlap=0 으로 줄였는데도 계속 에러가 떠요.어떻게 하면 해결할 수 있나요? database = PineconeVectorStore.from_documents( document_list, embedding, index_name=index_name )
-
미해결LangGraph를 활용한 AI Agent 개발 (feat. MCP)
커널 재실행 후 Run all 할 경우 에러
커널 재실행 직후 run all 하면 토큰 수 제한 에러가 뜹니다. 다시 run all하면 잘 실행되구요. websearch 후 generate의 query 찍어보면 토큰 수 제한 걸릴일이 없는 문장인데 왜이럴까요? websearch 후 generate의 query 값이 "쿼리입니다 === " 이 부분입니다.
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
gemini 오류관련 질문드립니다.
안녕하세요, 강의 반복중에 있습니다.이번에는 gemini로 RAG를 구축해보려고 하는데,API Key를 활성화했음에도 계속 하기와 같은 에러가 뜹니다.ㅠ 제가 놓친 부분이 있을까요?from langchain_google_genai import ChatGoogleGenerativeAI llm = ChatGoogleGenerativeAI( model="gemini-2.0-flash", temperature=0, max_tokens=None, timeout=None, max_retries=2, # other params... ) llm.invoke("인프런에 어떤 강의가 있나요?") --------------------------------------------------------------------------- PermissionDenied Traceback (most recent call last) Cell In[2], line 1 ----> 1 llm.invoke("인프런에 어떤 강의가 있나요?") File c:\Users\yunjeong2.lee\Desktop\VenvWorkspace\myenv\Lib\site-packages\langchain_google_genai\chat_models.py:1255, in ChatGoogleGenerativeAI.invoke(self, input, config, code_execution, stop, **kwargs) 1250 else: 1251 raise ValueError( 1252 "Tools are already defined." "code_execution tool can't be defined" 1253 ) -> 1255 return super().invoke(input, config, stop=stop, **kwargs) File c:\Users\yunjeong2.lee\Desktop\VenvWorkspace\myenv\Lib\site-packages\langchain_core\language_models\chat_models.py:372, in BaseChatModel.invoke(self, input, config, stop, **kwargs) 360 @override 361 def invoke( 362 self, (...) 367 **kwargs: Any, 368 ) -> BaseMessage: 369 config = ensure_config(config) 370 return cast( 371 "ChatGeneration", --> 372 self.generate_prompt( 373 [self._convert_input(input)], 374 stop=stop, 375 callbacks=config.get("callbacks"), ... metadata { key: "method" value: "google.ai.generativelanguage.v1beta.GenerativeService.GenerateContent" } ] Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
-
미해결노코드 자동화 입문부터 실전까지: n8n 완전정복 (한국 최초 n8n 앰버서더 직강)
MCP 와 AI AGENT 차이가 뭔가요?
문제 / 오류 / 질문에 대해 설명해 주세요 오류 메시지가 있다면 작성해 주세요 MCP 와 AI AGENT 차이가 뭔가요?비슷비슷해보이는데 컨텍스트가 있는 대화형 외의 큰 차이점이 있나요? 사용 중인 워크플로우를 공유해 주세요 n8n 설치 정보 안내 n8n 버전:데이터베이스 종류 (기본값: SQLite):n8n 실행 프로세스 설정 (기본값: own, main):n8n 실행 방식 (예: Docker, npm, n8n cloud, 데스크탑 앱 등):운영 체제:
-
미해결노코드 자동화 입문부터 실전까지: n8n 완전정복 (한국 최초 n8n 앰버서더 직강)
셀프호스팅 - 레일웨이
문제 / 오류 / 질문에 대해 설명해 주세요 오류 메시지가 있다면 작성해 주세요 사용 중인 워크플로우를 공유해 주세요 n8n 설치 정보 안내 n8n 버전:데이터베이스 종류 (기본값: SQLite):n8n 실행 프로세스 설정 (기본값: own, main):n8n 실행 방식 (예: Docker, npm, n8n cloud, 데스크탑 앱 등): railway운영 체제:안녕하세요! 강의 잘보고 있습니다.셀프호스팅에서 도커는 PC 사용에 부담을 느껴 paas 프로그램중 레일웨이를 사용하였는데요. 이렇게해서 오픈하니까.. 아예 실행이 안되더라구요 ㅜㅜ 제가 아예 개발을 모르는 사람이다 보니 아예 이유를 찾기가 어려워 여쭤봅니다.강의를 보고 아래 영상을 참고 했습니다 : https://www.youtube.com/watch?v=DhuaKAW819s&t=41s17:26초 쯤 있습니다!
-
미해결딥러닝 이론 + PyTorch 실무 완전 정복
섹션12 실습코드 의 initialization 각각 적용 코드 문의
실습코드에서 초기화 각각 적용 부분 self._init_weights(self.fc_layers[0], mode='kaiming') self._init_weights(self.fc_layers[1], mode='kaiming') self._init_weights(self.fc_layers[2], mode='xavier') 모델을 읽어보면 NeuralNetwork( (fc_layers): Sequential( (0): Linear(in_features=784, out_features=196, bias=True) (1): ReLU() (2): Linear(in_features=196, out_features=49, bias=True) (3): ReLU() (4): Linear(in_features=49, out_features=10, bias=True) (5): Sigmoid() ) ) 0, 2,4 번에 초기화를 적용해야 실제 작동을 할 것 같습니다.
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
LLM 애플리케이션과 AI Agent 차이점이 뭐에요?
개념상 똑같은거 같아요.예를들어 세무 전용 Agent 서비스가 있다고하면 결국 그게 LLM 서비스이고, LLM 애플리케이션이자, RAG 솔루션 아니에요? AI Agent = LLM 서비스 = LLM 애플리케이션 = RAG 솔루션 다같은말이에요?? 너무헷갈려요
-
미해결노코드 자동화 입문부터 실전까지: n8n 완전정복 (한국 최초 n8n 앰버서더 직강)
아래 2개 구현이 n8n 으로 가능한지 궁금합니다.
아래 2개 구현이 n8n 으로 가능한지 궁금합니다. 1/ 미팅 녹화본의 요약 & 액션 아이템을 정리해 주고, 그 내용 바탕으로 자동으로 원하는 형식의 1) 이메일을 써주거나 2) 회사 노션 3) 슬랙의 원하는 부분에 기재되게 하는 것2/ 미팅 녹화본의 스크립트 기반으로 적절한 블로그 글 주제 선정 및 (평소 쓰던 톤을 바탕으로) 글 작성해주고, 개인 네이버 블로그에 자동 작성되게 하는 것목표를 잡고 강의를 들으면 더 효능감이 있을 것 같아서 질문드려요!
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
데이터 전처리 관련 질문드립니다
"3.5 Retrieval 효율 개선을 위한 데이터 전처리" 강의에서 세율 데이터를 표로 LLM에 전달하다가마크다운으로 변경했는데 데이터를 읽어오지 못합니다표로 데이터를 전달했을 때는 데이터를 잘 읽어갔는데 왜 그런 걸까요?