묻고 답해요
156만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결입문자를 위한 LangChain 기초
새로 추가된 강의의 강의자료는 따로 없는 걸까요??
이전 강의에서는 코랩에서 작성하였는 데 마지막 강의만 뭐가 많이 다르네요..
-
미해결LLM 기초부터 최신 RAG·LangChain까지: 단 5시간 만에 LLM 기초과정 마스터!
일부 코랩 실습 파일 링크 연결 오류
다음의 코랩 실습 파일 링크 연결시 권한관련 오류 메시지가 나와서 노트북이 열리지 않습니다.해결방법 알려주세요.언어모델간임베딩유사도비교언어모델별_단어예측예시Konlpy_의미기반형태소분석기
-
미해결LLM 기초부터 최신 RAG·LangChain까지: 단 5시간 만에 LLM 기초과정 마스터!
코랩 실습 파일 링크
코랩 실습 파일 링크 연결시 권한관련 오류 메시지가 나와서 노트북이 열리지 않습니다.해결방법 알려주세요.
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
3.6 질문
624만원이 안나와요 ㅠ
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
3.4.1 PineconeVectorStore.from_documents() 안됩니다.
Upstage를 사용해도, exceeded 되었다고 에러나서요. 뭔가 최근에 토큰 제한이 줄었나봐요. 아래와 같이 batch를 주어서 반복문으로 요청후 database.add_documents(batch)하는 방식으로 해야되네요 ㅠㅠ from langchain_pinecone import PineconeVectorStore # 데이터를 처음 저장할 때 index_name = 'tax-upstage-index' # Split documents into smaller chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) chunked_documents = text_splitter.split_documents(document_list) print(f"Chunked documents length: {len(chunked_documents)}") # Initialize the PineconeVectorStore database = PineconeVectorStore.from_documents( documents=[], # Start with an empty list embedding=embedding, index_name=index_name ) # Upload documents in batches batch_size = 100 for i in range(0, len(chunked_documents), batch_size): print(f'index: {i}, batch size: {batch_size}') batch = chunked_documents[i:i + batch_size] database.add_documents(batch) # Add documents to the existing database
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 2 - 랭체인(LangChain)으로 나만의 ChatGPT 만들기
0:51
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
미해결실리콘밸리 엔지니어와 함께하는 랭체인(LangChain)과 랭그래프(LangGraph) 그리고 MCP
100% 수강 완료가 되지 않아요
100% 수강 완료가 되지 않아요실리콘밸리 엔지니어와 함께하는 랭체인(LangChain)*** Code 자료는 LangChain Github에 있습니다 *** 여기에 멈춰 있습니다. 들어갈수가 없고 해당 진도가 미 완료로 98%입니다.
-
미해결실리콘밸리 엔지니어와 함께하는 랭체인(LangChain)과 랭그래프(LangGraph) 그리고 MCP
100% 수강 완료가 되지 않아 문의드립니다.
100% 수강 완료가 되지 않아 문의드립니다.
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
3.4강 Pinecone API 인식 못 하는 문제
안녕하세요, 강의들으면서 도움 많이 받고 있습니다.Pinecone API를 .env에 적었지만 인식을 못해서하기와 같이 직접적으로 입력해주었습니다.그런데 하기 부분에서 또 다시 정의가 안 되었다고 에러가 뜹니다.어디를 수정해야할까요?커널?을 껐다켰다하면 되는 분도 있다고 해서 따라해봤는데 잘 안 되는 것 같습니다.ㅠ
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
3.2 RAG구성_400 에러 문의드립니다.
안녕하세요, 3.2 RAG구성 강의 중 하기 부분에서 막혔습니다. 조언 요청드립니다. OpenAI 대신, Upstage를 쓰고 싶어하기와 같이 코드 수정을 하였습니다.그런데 두번째 캡쳐 그림 부터 에러가 발생합니다.Upstage가 유효하지 않다고 하는 것 같은데...무엇이 잘못된 것 일까요? 그리고 실습을 위해 OpenAI를 결제해야한다면 얼마정도 하면, 완강하는데 문제없을까요?! Error code: 400 - {'error': {'message': 'The requested model is invalid or no longer supported. You can find the list of available models on our models page (https://console.upstage.ai/docs/models)', 'type': 'invalid_request_error', 'param': '', 'code': 'invalid_request_body'}}
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
3.1 pyenv 설치관련
안녕하세요, 비개발자로서 하나씩 따라하려고 수강중에 있습니다.MAC이 아닌 PC인데 pyenv 말고 venv? 로 파이썬 가상환경 만들어도 되는 것인가요?
-
미해결모두를 위한 대규모 언어 모델 LLM Part 5 - LangGraph로 나만의 AI 에이전트 만들기
STORM 관련 ipynb 소스에서
안녕하세요.. 수업노트에 있는 storm colab 파일을 따라 하는데..import json from langchain_core.runnables import RunnableConfig async def gen_answer( state: InterviewState, config: Optional[RunnableConfig] = None, name: str = "Subject_Matter_Expert", max_str_len: int = 15000, ): swapped_state = swap_roles(state, name) # Convert all other AI messages # 쿼리 생성 queries = await gen_queries_chain.ainvoke(swapped_state) query_results = await search_engine.abatch( queries["parsed"].queries, config, return_exceptions=True ) successful_results = [ res for res in query_results if not isinstance(res, Exception) ] # url와 콘텐츠 추출 all_query_results = { res["url"]: res["content"] for results in successful_results for res in results } # We could be more precise about handling max token length if we wanted to here dumped = json.dumps(all_query_results)[:max_str_len] ai_message: AIMessage = queries["raw"] tool_call = queries["raw"].tool_calls[0] tool_id = tool_call["id"] tool_message = ToolMessage(tool_call_id=tool_id, content=dumped) swapped_state["messages"].extend([ai_message, tool_message]) # Only update the shared state with the final answer to avoid # polluting the dialogue history with intermediate messages generated = await gen_answer_chain.ainvoke(swapped_state) cited_urls = set(generated["parsed"].cited_urls) # Save the retrieved information to a the shared state for future reference cited_references = {k: v for k, v in all_query_results.items() if k in cited_urls} formatted_message = AIMessage(name=name, content=generated["parsed"].as_str) return {"messages": [formatted_message], "references": cited_references}이 부분에서 궁금한 것이 생겼습니다. 중간에 tool_call = queries["raw"].tool_calls[0] tool_id = tool_call["id"] 중간에 tool_calls 관련 정보를 호출하는데..그럴려면 gen_queries_chain이 체인에 tool_bind된 llm이 사용되어야 하는 것 아닌가요? duckduckgo 관련 search_engine함수를 @tool을 이용해서 tool로 선언한 것 같은데.. 해당 퉁을 llm에 바인딩하는 것을 못보아서.. tool index 부분에서 Cell In[46], line 30, in gen_answer(state, config, name, max_str_len) 28 dumped = json.dumps(all_query_results)[:max_str_len] 29 ai_message: AIMessage = queries["raw"] ---> 30 tool_call = queries["raw"].tool_calls[0] 31 tool_id = tool_call["id"] 32 tool_message = ToolMessage(tool_call_id=tool_id, content=dumped) IndexError: list index out of range가 발생하는 것 같습니다. 어떻게 수정하면 되는지 알려주세요..
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
답변 정확성이 떨어지는 것 같습니다
Upstage의 모델을 사용하는데 답변의 정확성이 떨어지는 것 같습니다. 아래 캡처 화면을 보면 retriever가 페이지를 가져오는 것 까지는 괜찮아 보이는데, 가져온 문서의 내용을 적용하여 계산하는 것, 그리고 심지어 기본적인 수학적 계산도 종종 오류를 냅니다 ㅜㅜ 더 정확한 답변을 내도록 할 방법이 있을까요?
-
미해결모두를 위한 대규모 언어 모델 LLM Part 5 - LangGraph로 나만의 AI 에이전트 만들기
AI 에이전트를 위한 웹검색(Web search) Tool 에서 DuckDuckGoSearchRun 실행 관련..
안녕하세요..DuckDuckGo 검색 관련 랭체인 가이드 보고 따라하는데from langchain_community.tools import DuckDuckGoSearchRun search = DuckDuckGoSearchRun(cache_results=True) result = search.invoke("obama's first name?") print(result)이를 실행했을 때, 다음과 같은 오류가 발생합니다. 어떻게 수정해야 하는지 알려주셨으면 좋겠습니다.---------------------------------------------------------------------------DuckDuckGoSearchException Traceback (most recent call last) Cell In[18], line 103 from langchain_community.tools import DuckDuckGoSearchRun 6 search = DuckDuckGoSearchRun(cache_results=True) ---> 10 result = search.invoke("obama's first name?") 11 print(result) File ~/Workspace/pythonprj/langgraphtutorial/.venv/lib/python3.12/site-packages/langchain_core/tools/base.py:513, in BaseTool.invoke(self, input, config, kwargs)505 @override 506 def invoke( 507 self, (...) 510kwargs: Any, 511 ) -> Any: 512 tool_input, kwargs = preprun_args(input, config, kwargs) --> 513 return self.run(tool_input, kwargs) File ~/Workspace/pythonprj/langgraphtutorial/.venv/lib/python3.12/site-packages/langchain_core/tools/base.py:774, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, tool_call_id, kwargs)772 if error_to_raise: 773 run_manager.on_tool_error(error_to_raise) --> 774 raise error_to_raise 775 output = formatoutput(content, artifact, tool_call_id, self.name, status) 776 run_manager.on_tool_end(output, color=color, name=self.name, kwargs) File ~/Workspace/pythonprj/langgraphtutorial/.venv/lib/python3.12/site-packages/langchain_core/tools/base.py:743, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, tool_call_id, **kwargs)... 181logger.info(f"Error to search using {b} backend: {ex}") 182 err = ex --> 184 raise DuckDuckGoSearchException(err) DuckDuckGoSearchException: https://lite.duckduckgo.com/lite/ 202 Ratelimit 확인 부탁드립니다.
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
배포시 버전 에러가 생깁니다
streamlit에서 배포시 위와 같은 에러가 발생합니다 ㅜㅜ파이썬 버전은 3.10.2이고, requirements.txt는 아래와 같습니다. aiohappyeyeballs==2.6.1aiohttp==3.10.11aiosignal==1.3.2altair==5.5.0annotated-types==0.6.0anyio==4.3.0asgiref==3.8.1asttokens==3.0.0async-timeout==4.0.3attrs==25.3.0backoff==2.2.1bcrypt==4.3.0blinker==1.9.0build==1.2.2.post1cachetools==5.5.2certifi==2022.12.7charset-normalizer==3.1.0chroma-hnswlib==0.7.6chromadb==0.6.3click==8.1.8colorama==0.4.6coloredlogs==15.0.1comm==0.2.2contourpy==1.2.0cycler==0.12.1dataclasses-json==0.6.7debugpy==1.8.14decorator==5.2.1Deprecated==1.2.18distro==1.9.0docx2txt==0.9durationpy==0.9exceptiongroup==1.2.0executing==2.2.0fastapi==0.115.12filelock==3.18.0flatbuffers==25.2.10fonttools==4.47.2frozenlist==1.6.0fsspec==2025.3.2gitdb==4.0.12GitPython==3.1.44google-auth==2.39.0googleapis-common-protos==1.70.0greenlet==3.2.2grpcio==1.71.0h11==0.14.0httpcore==1.0.4httptools==0.6.4httpx==0.27.0httpx-sse==0.4.0huggingface-hub==0.30.2humanfriendly==10.0idna==3.4importlib_metadata==8.6.1importlib_resources==6.5.2iniconfig==2.1.0ipykernel==6.29.5ipython==8.36.0jedi==0.19.2Jinja2==3.1.6jiter==0.9.0joblib==1.4.2jsonpatch==1.33jsonpointer==3.0.0jsonschema==4.23.0jsonschema-specifications==2025.4.1jupyter_client==8.6.3jupyter_core==5.7.2kiwisolver==1.4.5kubernetes==32.0.1langchain==0.3.25langchain-chroma==0.2.3langchain-community==0.3.23langchain-core==0.3.58langchain-openai==0.3.16langchain-pinecone==0.2.6langchain-tests==0.3.19langchain-text-splitters==0.3.8langchain-upstage==0.6.0langsmith==0.3.42markdown-it-py==3.0.0MarkupSafe==3.0.2marshmallow==3.26.1matplotlib==3.8.2matplotlib-inline==0.1.7mdurl==0.1.2mmh3==5.1.0mpmath==1.3.0multidict==6.4.3mypy_extensions==1.1.0narwhals==1.38.2nest-asyncio==1.6.0numpy==1.26.4oauthlib==3.2.2onnxruntime==1.21.1openai==1.78.0opentelemetry-api==1.32.1opentelemetry-exporter-otlp-proto-common==1.32.1opentelemetry-exporter-otlp-proto-grpc==1.32.1opentelemetry-instrumentation==0.53b1opentelemetry-instrumentation-asgi==0.53b1opentelemetry-instrumentation-fastapi==0.53b1opentelemetry-proto==1.32.1opentelemetry-sdk==1.32.1opentelemetry-semantic-conventions==0.53b1opentelemetry-util-http==0.53b1orjson==3.10.18overrides==7.7.0packaging==23.2pandas==2.2.3parso==0.8.4pillow==10.2.0pinecone==6.0.2pinecone-plugin-interface==0.0.7platformdirs==4.3.8pluggy==1.5.0posthog==4.0.1prompt_toolkit==3.0.51propcache==0.3.1protobuf==5.29.4psutil==7.0.0pure_eval==0.2.3pyarrow==20.0.0pyasn1==0.6.1pyasn1_modules==0.4.2pydantic==2.11.4pydantic-settings==2.9.1pydantic_core==2.33.2pydeck==0.9.1Pygments==2.19.1pyparsing==3.1.1pypdf==4.3.1PyPika==0.48.9pyproject_hooks==1.2.0pyreadline3==3.5.4pytest==8.3.5pytest-asyncio==0.26.0pytest-socket==0.7.0python-dateutil==2.8.2python-dotenv==1.1.0pytz==2025.2pywin32==305PyYAML==6.0.2pyzmq==26.4.0referencing==0.36.2regex==2024.11.6requests==2.32.3requests-oauthlib==2.0.0requests-toolbelt==1.0.0rich==14.0.0rpds-py==0.24.0rsa==4.9.1scikit-learn==1.5.1scipy==1.14.0shellingham==1.5.4six==1.16.0smmap==5.0.2sniffio==1.3.1SQLAlchemy==2.0.40stack-data==0.6.3starlette==0.46.2streamlit==1.45.0sympy==1.14.0syrupy==4.9.1tenacity==9.1.2threadpoolctl==3.5.0tiktoken==0.9.0tokenizers==0.19.1toml==0.10.2tomli==2.2.1tornado==6.4.2tqdm==4.66.2traitlets==5.14.3typer==0.15.3typing-inspect==0.9.0typing-inspection==0.4.0typing_extensions==4.13.2tzdata==2025.2urllib3==1.26.15uvicorn==0.34.2watchdog==6.0.0watchfiles==1.0.5wcwidth==0.2.13websocket-client==1.8.0websockets==15.0.1wrapt==1.17.2yarl==1.20.0zipp==3.21.0zstandard==0.23.0
-
미해결모두를 위한 대규모 언어 모델 LLM Part 5 - LangGraph로 나만의 AI 에이전트 만들기
ReWoo 아키텍처에서는 RePlan이 필요없나요?
안녕하세요.. Plan and Executor 아키텍처에서는 Planning 하고 하나의 태스크를 실행하고, 그리고 다시 Replanning 에이전트를 거치면서 답변을 만들어 가는데, ReWoo 아키텍처에서는 RePlanning 과정에 대한 설명이 없던데.. 그렇다면 ReWoo 아키텍처의 Planner 에이전트 성능이 좋아서 모든 게획을 세운것처럼 보이는데. Plan and Executor의 Planner 에이전트도 모든 계획을 세운 것이 아닌건가요? 둘사이 프롬프트가 달라서 그런건가요? ReWoo에서는 왜 재계획 에이전트가 필요없는건가요?
-
해결됨RAG를 활용한 LLM Application 개발 (feat. LangChain)
langChain 최신버전 문서
최신 버전 LangChain 문서의 <How to add chat history> 부분이 강의 영상이랑 대부분 다른 것 같은데 강의 영상 코드 기준으로 진행해도 문제가 없을까요?(https://python.langchain.com/docs/how_to/qa_chat_history_how_to/#chains)
-
미해결AI 에이전트로 구현하는 RAG 시스템(w. LangGraph)
[실습을 위한 환경 설정 방법] 자료가 없습니다.
자료 다운로드를 해도 toml파일만 있고 resaurant_wine.txt등의 파일들이 다 없는데 어디서 찾는걸까요..m2사용하고있습니다
-
해결됨실리콘밸리 엔지니어와 함께하는 랭체인(LangChain)과 랭그래프(LangGraph) 그리고 MCP
MCP 서버 관련 질문이있습니다.
안녕하세요! 강의 잘 보고있습니다. MCP 관련해서 질문이 두 개 있습니다.# 1MCP튜토리얼과 이 강의, 유투브를 보고 MCP 서버를 개발중입니다.https://github.com/snaiws/DART-mcp-serverDART api연동하는 서버고 api가 83종류가 있습니다.FastMCP 사용하니 메인 스크립트에 함수를 매우 많이 적어야해서 팩토리클래스를 만들고, docstring을 따로 관리하고싶어 함수와 docstring을 분리해서 팩토리클래스에서 조립했습니다. 그런데 이렇게 만들고보니 FastMCP 개발방식 말고 from mcp.server import Server를 통해 좀 더 로우레벨로 만드는 방식도 있는 것 같았습니다. https://github.com/modelcontextprotocol/python-sdk여기의 Low-Level부분입니다.혹시 Low-level관련 영상도 업로드예정이 있으신가요?# 2MCP 서버에 툴을 83개나 만들면 tool calling하는데 헷갈려할 것 같은데 맞는지... 그리고 어떻게 대처가 가능할지 조언부탁드립니다 감사합니다.
-
미해결RAG를 활용한 LLM Application 개발 (feat. LangChain)
배포 시 오류 (Chroma sqlite3 버전 오류)
안녕하세요 강사님.마지막 Streamlit Cloud 배포 후 버전 오류가 발생해서 질문 납깁니다!Python은 3.10.17 버전 사용하고 있습니다.retriever에 pinecone 사용하지 않고 Chroma 를 사용했고요, requirements.txt 에 버전은 langchain-chroma==0.2.3chromadb==0.6.3로 들어가 있습니다.오류는 unsupported version of sqlite3. Chroma requires sqlite3 >= 3.35.0.라고 뜨는 걸 보면 chromadb 에서 sqlite3 를 사용하고 그 버전 오류인 것 같은데요.. 어떻게 조치를 할지 검색해도 잘 모르겠어서 질문 남깁니다. 감사합니다.