묻고 답해요
158만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
옥스포드 pet 데이터 테스트(모델평가)
Ultralytics Yolo 실습 - 01 의 옥스포드 pet 데이터를 가지고 테스트 부분 따라하고 있습니다. 그런데 test.py가 없다는 오류가 뜹니다. test.py는 어느 단계에서 어떤 코드에 의해 만들어진 건가요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Confidence score가 높을수록 많은 Box가 제거된다?
"NMS의 이해" 편 5:40에서 "Confidence score가 높을수록, IoU Threshold가 낮을수록 많은 Box가 제거된다"라고 말씀하셨는데,Confidence score가 아닌, Confidence threshold가 아닌지 질문 드립니다.
-
해결됨최신 딥러닝 기술과 객체인식
Yolov6 실습 에러
실습의 실행하기를 따라해보면 추론은 되지 않고 실행결과에 다음과 같은 문구가 들어있어요. 왜 실행이 안되는 걸까요?AttributeError: Can't get attribute 'SimConvWrapper' on <module 'yolov6.layers.common' from '/content/gdrive/MyDrive/yolo/YOLOv6/yolov6/layers/common.py'>
-
미해결[AI 실무] AI Research Engineer를 위한 논문 구현 시작하기 with PyTorch
gpu설정
엔비디아 gpu내장안되어있으면 gpu사용이 안되는건가요? 제 노트북은 Intel Arc TM Graphics 입니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
로컬 GPU 사용법
안녕하세요 mmdetection을 설치하려고 하는데로컬에 있는 GPU를 사용해서 학습을 해보려고 합니다.코랩에서 제공하는 GPU 말고 로컬의 GPU를 사용할 수 있는 방법이 있을까요?
-
미해결C# OpenCV 컴퓨터비전 입문 강좌
섹션2 1강 중, CvCapture 초기화 중 에러 발생.
선생님 ㅠ저는 노트북 카메라 화면을 가져오려고 해서 index는 0으로 기입했구요.try 구문에서 CvCapture.FromCamera 가져올 때부터 결과가 null이더라구요.Exception 메시지를 확인해보니까, "OpenCvSharp.CPlusPlus.NativeMethods'의 형식 이니셜라이저에서 예외를 Throw했습니다." 라고 하는데, 이 문제는 어떻게 해결해야 하나요?? ㅠ
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Mini-batch Gradient Descent computation time 질문
안녕하세요 선생님시간과 체력이 더 많았으면 좋겠다는 생각이 들 정도로 강의를 너무 재밌게 보고 있습니다Mini batch Gradient Descent 이론 편에서 Mini batch Size에 비례하지 않는다는 설명을 보았는데요.물론 병렬처리를 하기 때문에 정비례하지 않겠지만 GPU에 올릴 수 있는 최대 데이터양이 100개라고 가정한다면 미니배치를 200, 300, .. 이런 식으로 키운다면 미니 배치크기에 따라 비례하는 것은 맞지 않나요?혹시 제가 잘못 생각하고 있다면 말씀해주세요 감사합니다!
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Huber Loss에 대한 질문
안녕하세요?: 선생님강의 정말 재밌게 잘 보고 있습니다.강의 내용 중에 Huber Loss는 전미분이 한 번밖에 되지 않는다는 단점을 언급해주셨는데요Gradient Descent를 적용할 때는 weight에 대한 편미분만 적용하기 때문에 역전파 시에는 무관한 거 아닐까요?따라서 Epoch를 2 이상의 숫자를 두고 학습하는데 전혀 지장이 없는 거 아닌가요?왜 전미분이 1번만 된다는 게 단점이 된다는 것인지 이해가 잘 되지 않습니다.
-
미해결[모바일] 딥러닝 Computer Vision 실전 프로젝트
강의자료
안녕하세요, 강의자료가 어디있는지 모르겠어요.다른 질의응답 글 보고 구름모양 다운버튼을 찾아봤는데 안보여요ㅠㅠ
-
미해결[모바일] 딥러닝 Computer Vision 실전 프로젝트
[모바일] 딥러닝 Computer Vision 실전 프로젝트 강의 자료 받는법
[모바일] 딥러닝 Computer Vision 실전 프로젝트강의 자료 어떻게 받나요? https://www.creapple.com에 들어가봐도 자료가 없습니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
섹션5 <공지>
섹션5 <공지> 코드 https://github.com/chulminkw/DLCV <여기에 있나요?? 찾아도 없어서요.
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Batch size 가 극단적으로 작은 경우 (예를들어 batch_size =1) Normalization 적용 방안
강사님, 본 강의 들으면서 정말 많은 도움을 받고 있습니다. normalization 에 대해서 이렇게 상세하게 설명해 준 온라인 강의는 본 적이 없네요 🙂 CNN 을 기반으로 하되 모델 파라메터도 엄청 크고, 데이터셋 크기도 매우 큰 경우, 예를 들어 3D Unet 을 구성해서 3차원의 고해상도 (256 x 256 x 256) 이미지를 input 과 output 으로 사용하다보니 GPU 메모리를 너무 많이 잡아먹어서 batch 에 복수의 샘플을 적용하지 못하고 하나의 batch 에 단일 샘플만 적용하는 경우를 study 하고 있는데요, BatchNormalization 을 적용했을 경우 오히려 학습이 잘 안 되는 것 같아서 Normalization layer 를 야예 제거한 후 모델 학습 진행 중이었습니다. 경험적으로 했던 것이었지만 본 강의를 보다 보니 그 이유가 조금 이해가 되기도 하는데요, 이와 같이 batch size 가 극단적으로 작은 경우에 Normalization layer 을 적용 안하는게 더 좋을 수 있나요? 혹은 설명해 주신 table 에 나와 있는 것 처럼 Group Normalization layer 나 Instance Normalization을 적용하는 것이 개념적으로 더 나은 방법일까요? (설명을 들었을 때는 Group Normalization 을 적용하는 것이 필요한 상황으로 이해가 되기도 하는데.. 제가 이해한 것이 맞는지 확인 부탁드립니다 ^^;) 그리고 Group Normalization 에서 "Group" 의 의미가 무엇인지 잘 와닿지가 않아서 (Batch 나 Width, Height, Sample Number 이외에 그룹이 될 수 있는 경우가 무엇인지가 잘 이해가 되지 않습니다.) ... 요 부분에 대해서 좀 더 설명해 주시면 감사드리겠습니다!
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
YOLO_V3에서 output layer 질문입니다.
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 안녕하세요. 로드맵 따라가며 강의 정말 잘 듣고있습니다 !항상 친절한 답변도 감사드립니다.다름이 아니라 Yolo 3를 구현하면서 궁금증이 생겼습니다.1. output을 담당하는 layer가 3개이므로(13X13/26X26/52X52) 3개의 layer에서 forward를 이용하여 결과를 추출한다고 이해했는데 이게 맞나요?3개에서 뽑은 output(confidence_threshold보다 큰) 을 종합한 후 NMS process를 거쳐서 최종적으로 조건에 맞는 index를 반환받아 그 index를 이용해 image에 구현한다고 이해했는데 이것도 맞을까요? 만약 위에서 제가 이해한게 어느정도 맞다면 마지막으로 드는 궁금증은 13X13, 26X26, 52X52에서 각 Grid Cell이 image의 object를 예측할텐데,이는 비유하자면 Random Forest에서 각각 학습한 model이 다수결(?)로 infernece한다고 이해해도 될까요? 즉, 세개의 Multi Scale에서 학습한 각각의 gride cell의 anchor box들이 자신의 의견을 내놓아 그중 confidence, nms의 조건을 이용해 최종적으로 조건에 부합하는 몇 개의 bbox만 남는걸로 이해해도 되는지 여쭤보고 싶습니다..!
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Normalization 질문
안녕하세요, 수업 설명 감사드립니다. cnn이 아닌 일반적인 fully connected NN (multi-layer perceptron) 에서 혹시 batch/instance/layer normalization 을 어떻게 계산하는지 설명을 부탁드려도 될까요 (그림으로 표현해 주시면 더 좋을거 같습니다.)MLP에서라면 small c가 특정 hidden layer의 node/unit에 대응될거 같고 large C가 layer 전체를 표현할거 같은데, H,W는 무엇인지 이해가 잘 되지 않습니다. 특히, MLP에서 instance normalization의 평균/분산을 구할 수가 있을지 궁금합니다 (단일 값 하나일거 같은데..)강사님께서는 어떻게 생각하시는지 알려주시면 감사드리며, 제가 잘못 이해한 부분이 있으면 코멘트 부탁드리겠습니다. 추가로 하나만 더 질문드리고 싶습니다.강의안에서 x_nhwc는 벡터일까요? 아니면 scalar 값일까요? Normalization의 경우에 feature간 (예, 인풋 변수) 평균도 구하는지, element-wise로 구하는지 궁금해서 여쭤봅니다.바쁘실텐데 시간내주셔서 미리 감사드립니다.
-
미해결차량 번호판 인식 프로젝트와 TensorFlow로 배우는 딥러닝 영상인식 올인원
Custom Dataset 실전 프로젝트 실습 1 - CRNN를 이용한 License Plate OCR 모델(Custom Dataset) 학습
결과 30만 나오는 현상 무엇이 잘못되었을까요?데이터 전부 30만 나옵니다
-
미해결차량 번호판 인식 프로젝트와 TensorFlow로 배우는 딥러닝 영상인식 올인원
Custom Dataset 실전 프로젝트 실습 1 - CRNN를 이용한 License Plate OCR 모델(Custom Dataset) 학습
recognizer = keras_ocr.recognition.Recognizer()여기서 인식할 수 없는 키워드가 Dense에 전달되었다고 하면서 진행이 되질 않습니다.
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Section 7 [Activation Function의 종류] Softmax logit 분포와 Entropy 질문이 있습니다
안녕하세요 선생님해당 강의 마지막 참고사항: what is entropy 부분에서 Temperature가 낮을수록 softmax logit의 분포가 쏠리면 Entropy가 감소하게 되는 것이 아닌지 궁금합니다! 확인해주셔서 감사합니다!
-
미해결차량 번호판 인식 프로젝트와 TensorFlow로 배우는 딥러닝 영상인식 올인원
Custom Dataset 실전 프로젝트 실습 1 - CenterNet을 이용한 License Plate Detection 모델(Custom Dataset) 학습 실습 Solution
- CenterNet을 이용한 License Plate Detection 모델(Custom Dataset) 학습 실습 Solution 실습해보는데 계속 버젼이 달라서 그런지 실행이 안되네요
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Section 3 [실습] PyTorch로 구현해보는 Loss Function의 Cross Entropy 구현 관련하여 질문이 있습니다.
안녕하세요 선생님,batch_size = 16 n_class = 10 def generate_classification(batch_size=16, n_class=10): pred = torch.nn.Softmax()(torch.rand(batch_size, n_class)) ground_truth = torch.argmax(torch.rand(batch_size, n_class), dim=1) return pred, ground_truth def CE_loss(pred, label): loss = 0. exp_pred = torch.exp(pred) # 이 부분 관련 질문이 있습니다. for batch_i in range(len(pred)): for j in range(len(pred[0])): if j == label[batch_i]: print(pred[0], j) loss = loss + torch.log(exp_pred[batch_i][j] / torch.sum(exp_pred, axis=1)[batch_i]) return -loss / len(pred)CE loss를 구현하는 과정에서 exp_pred = torch.exp(pred) 행이 왜 필요한 것인지 궁금합니다!exp를 취해주는 이유는 모델의 출력값 logits에 exp를 적용해 각 클래스에 대한 예측값을 양수로 변환한다고 알고 있는데generate_classification위에서 이미 softmax를 취해서 확률분포로 변환해주기 때문에 음수 값은 나오지 않는데 왜 exp를 적용해주어야 하는지 모르겠어서 여쭤봅니다!
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Section 3의 [이론] Regression task의 Loss: L1, L2, Huber, Log Cosh Loss "미분가능"관련 에서 질문이 있습니다.
안녕하세요 선생님!Section 3의 [이론] Regression task의 Loss: L1, L2, Huber, Log Cosh Loss 에서 질문이 있습니다."미분 가능"에 대해서 궁금한 점이 있는데,MAE loss처럼 0에서 미분이 불가능 한 경우에는 gradient를 계산할 수 없는데 어떻게 해당 loss를 사용할 수 있는 것인가요?또 Huber loss는 한 번만 전 구간 한번만 미분가능하고,Log Cosh loss는 전 구간 2번 이상 미분가능하다고 말씀해주셨는데한 번만 미분 가능한 것보다 2번 이상 미분가능한 것의 장점이 무엇인가요?확인해주셔서 감사합니다!