묻고 답해요
164만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
해결됨머신러닝 모델을 활용한 Android, iOS 앱 개발
공지
강좌 운영이나 강의 내용에 관해 궁금한 점이 있으면 자유롭게 나누어주세요.교수자, 수강생 누구나 글쓰기와 댓글 쓰기가 가능합니다.
-
해결됨머신러닝, 딥러닝 입문 : 알고리즘 이해하기
공지
강좌 운영이나 강의 내용에 관해 궁금한 점이 있으면 자유롭게 나누어주세요.교수자, 수강생 누구나 글쓰기와 댓글 쓰기가 가능합니다.
-
해결됨딥러닝 차세대 혁신기술 - 물리 정보 신경망 입문과 Pytorch 실습
2. 미분방정식에서 n이 뭐죠 ?
t - 시간x - x축상의 위치n ?
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
7강 폴더 만들
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 폴더 만드는 부분에서 directory_create('x/x')를 하게 되면 x에 어떤 이름을 넣어도 다 이미 만들어졌다고만 뜨고 실제 드라이브 들어가면 아무것도 폴더가 생성이 안되었는데, 왜 그런건지 잘 모르겠어요. 그리고 현재 디렉토리 위치 설정하는 것도 이런 오류가 발생하는데, 구글 드라이브 마운트 할 때는 잘 됐었는데 이런 오류가 발생하네요..! cd/~ 의 코드를 실행하면 현재 디렉토리를 cd/~에서 ~에 해당하는 디렉토리로 이동해주는게 아닌가요? 아래 사진은 현재 드라이브 디렉토리 경로입니다!
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
test data 의 loss 계산식 문의
10_ADVANCE-EXAMPLE-MILTI-LABEL-CLASSIFICATION 과 11_MILTI-LABEL-CLASSIFICATION-DROPOUT-BATCHNORMALIZATION 강의자료에서 맨 밑부분의 테스트셋 기반 Evaluation 에서 test_loss 를 계산할 때 전체 데이터인 10000으로 나누셨는데, 왜 그러신건지 궁금해서 질문드립니다.train 과 validation 의 loss 계산은 train_batches 와 val_batches 개수(for문 도는 횟수) 만큼만 나누셨는데 test loss 를 계산할 때는 minibatch 가 아닌 전체 데이터로 나누셔서 상대적으로 test data 의 loss 값이 작아보여서요.test_loss = 0correct = 0wrong_samples, wrong_preds, actual_preds = list(), list(), list()model.eval()with torch.no_grad(): for x_minibatch, y_minibatch in test_batches: y_test_pred = model(x_minibatch.view(x_minibatch.size(0), -1)) test_loss += loss_func(y_test_pred, y_minibatch) pred = torch.argmax(y_test_pred, dim=1) correct += pred.eq(y_minibatch).sum().item() wrong_idx = pred.ne(y_minibatch).nonzero()[:, 0].numpy().tolist() for index in wrong_idx: wrong_samples.append(x_minibatch[index]) wrong_preds.append(pred[index]) actual_preds.append(y_minibatch[index]) test_loss /= len(test_batches.dataset)
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
차원 출력 관련 문의
주피터 노트북 "06_1_DNN_PYTORCH" 자료에서 등록된 parameter 의 차원을 출력해보면 최초 출력되는 파라미터가 최초 등록한 nn.Linear(input_dim, 10) // (4, 10) 이면 (4, 10) 이 출력되어야 할 것 같은데 왜 (10, 4) 가 출력될까요? x = torch.ones(4) # input tensory = torch.zeros(3) # expected outputinput_dim = x.size(0)output_dim = y.size(0)model = nn.Sequential ( nn.Linear(input_dim, 10), nn.LeakyReLU(0.1), nn.Linear(10, 10), nn.LeakyReLU(0.1), nn.Linear(10, 10), nn.LeakyReLU(0.1), nn.Linear(10, output_dim) ) loss_function = nn.MSELoss()learning_rate = 0.01nb_epochs = 1000 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)for epoch in range(nb_epochs + 1): y_pred = model(x) loss = loss_function(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() print(loss)for param in model.parameters(): print (param) print(param.shape)
-
미해결실전 인공지능으로 이어지는 딥러닝 개념 잡기
다중레이어 경사하강법에서 질문
안녕하세요 강사님Loss 함수가 아닌 y_hat부터 미분 하는 이유가 뭔가요?W_11이 Loss의 결과에 미치는 영향을 알기 위해 Loss함수 부터 미분 해야 하지 않나요?? ㅠ
-
해결됨실전 인공지능으로 이어지는 딥러닝 개념 잡기
XOR파트에서 입력표현 방식
안녕하세요 강사님 오랜만에 다시 복습중입니다.XOR문제 6:30쯤에 입력을 행렬로 만들어서 사용 하는데요그 전까지는 입력을 열벡터로 표현 했었는데 다수의 입력을 표현 할때는 왜 행벡터로 표현이 되었는지 궁금합니다.
-
해결됨실전 인공지능으로 이어지는 딥러닝 개념 잡기
경사하강법에서 다중레이어에서의 가중치를 구할 때 식이 이해가 가질 않습니다 ㅠ.ㅠ
y hat을 w11로 미분한 값을 구할 때 위 표시처럼 2가 곱해져야 하는 게 아닌가요??
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
섹션 7-4 당뇨병
당뇨병 문제에서 직접 이상치 제거하는 게 손실 함수 줄이는데 도움이 될거라고 생각했는데 오히려 너무 커져버려서 왜 그런 건지 궁금합니다. 또 직접 제거하는 방식 말고 다르게 이상치 탐지하는 게 딥러닝에는 따로 있나요?
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
4-3강 cross-validation에서의 best model 선정 기준
강사님, 안녕하세요! 항상 좋은 강의 잘 보고 있습니다 :D4-3강 교차 검증(Cross-Validation)에서 best model을 어떻게 선정하는 것인지 조금 헷갈려 질문 드립니다.예를 들어, 본 강의에서는 3개 fold에 대해 cross-validation을 수행하고, 모델의 최종 성능은 <3개 fold의 validation loss의 평균>으로 계산되는 것으로 이해했는데요.1) 그렇다면 hyperparameter tuning 등을 통해 이 <평균 validation loss>가 가장 낮아지는 모델을 찾아야 하는 것이 맞나요? 다시 말해, 여러 번 cross-validation을 수행함으로써 가장 낮은 <평균 validation loss>를 가지는 모델을 best model로 선정하는 것이 맞는지 궁금합니다.2) 만약 맞다면, 앞선 강의들에서는 "epoch 마다" loss가 최소화되는지 확인하고 모델 save를 수행했었는데, 이제는 "CV를 수행할 때 마다" loss가 최소화되는지 확인하고 모델 save를 수행하면 되는 것이 맞나요?3) 마지막으로, 이미 학습된 결과를 바탕으로 best model을 선정했는데 왜 best model에 한 번 더 전체 trainset으로 학습을 진행해줘야 하는지 궁금합니다.
-
해결됨실전 인공지능으로 이어지는 딥러닝 개념 잡기
경우에 따른 최적의 활성화 함수 선정하는 방법
안녕하세요 호형 선생님. 강의 잘 들었습니다. 이번 ' 개념편 4강 활성화 함수 ' 에서 질문이 있습니다. 진행하는 업무에 따라 ( 인공 신경망의 각 층에 적용하는 ) 최적의 활성화 함수가 무엇인지는 다 다를 수 있다고 하셨는데요. 그럼 그 최적의 활성화 함수가 무엇일지 미리 연역적으로 알 수 있는 방법이 있나요?( 예를 들면 , 이 문제는 이런 특징이 있으니 , 이런 특징을 잘 나타내는 어쩌구 함수를 활성화 함수로 쓰면 되겠다 등 ) 아니면 그냥 결과적으로 모든 종류의 활성화 함수를 하나하나 대입해보며 가장 좋은 성능이 나오는 함수를 선택하는 수 밖에 없나요 ? 감사합니다.
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
BackPropagation 질문입니다
오차 역전파가 작동하기 위해서는 결국 마지막 layer의 가중치 (w)값을 알아야 하는 거 같은데 마지막 layer의 가중치는 어떻게 구하나요?
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
RMSProp 관련 질문입니다.
안녕하세요! 섹션 9에서 AdaGrad, RMSProp 강의를 보다 궁금한 점이 생겨 질문드립니다. 제가 이해한 바로는, RMSProp은 학습이 잘 안되었음에도 t가 커질수록 $G_t$가 커지는 문제를 최대한 막는 방법이라고 이해했습니다. $G_t = \gamma G_{t-1} + (1 - \gamma)g_t^2$그런데 위 식대로라면 미분값($g_t$)이 커질때 오히려 $G_t$가 감소할수도 있을 것 같은데RMSProp은 AdaGrad와 달리 learning_rate가 커지는 쪽으로도 조절될 수 있도록 한 것인가요? 만약 맞다면 제가 알기로는 learning_rate는 t에 따라 감소하도록 하는 것이 일반적이라고 알고 있는데RMSProp에서 이렇게하면 학습에서 어떤 이점이 있는 것인지 궁금합니다.
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
파이토치와 비교하며 Numpy 라이브러리 사용법 익히기2 질문입니다.
약 11분 경에 행렬 곱셈을 설명하는 부분에서"앞 행렬의 행의 갯수와 뒷 행렬의 열의 갯수가 같아야 행렬간 곱셈이 가능하다"고 되어있는데 제가 알기로는 (n, k) @ (k, m) = (n, m) 이어서앞 행렬의 열의 갯수와 뒷 행렬의 행의 갯수가 같아야 행렬 곱셈이 가능하다고 알고 있습니다.제가 알고 있는게 맞을까요? 검색해봐도 설명이 이렇게 나와서 어느것이 맞는지 질문드립니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
regression 문제에 대한 결과 시각화
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.강사님 안녕하세요. t-SNE 수업에 대하여 궁금한점이 있습니다.강의에서는 classification 문제에 대한 시각화를 알려 주셨는데요, 혹시 regression 에 대해서도 t-SNE를 적용할 수 있을지 궁금합니다. 만약 불가능 하다면, t-SNE 이외에 활용할 수 있는 다른 방법이 있을지 궁금합니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
Loss function 관련하여 질문드립니다.
강사님 안녕하세요. test loss 및 validation loss 관련하여 질문드립니다. train loss와 validation loss 플랏을 보고, 이 모델이 잘 학습이 되었는지 어떻게 판단해야 하는지가 궁금하여 질문드리게 되었습니다.강의 코드를 활용하여 학습하고자 하는 데이터에 적용해 보았습니다. 같은 데이터여도, 모델을 어떻게 구성하는지에 따라 에폭에 따른 loss 값이 큰 차이를 보였습니다. Case 1) 초기 epoch의 validation loss가 train loss보다 낮은 경우Case 2 ) validation loss와 train loss의 차이가 큰 경우Case 3) Validation loss가 감소하는 형태를 띄나, 크게 fluctuation 할 경우Case 4) Validation loss가 크게 fluctuation하며, 감소하는 형태가 아닌 경우 (증가 -> 감소)말씀드린 4가지 case 경우 모두, 최종적으로 loss 값 자체는 낮게 나왔습니다.하지만 제가 이상적이라고 생각한 loss 곡선에는 모두 벗어나는것 같아서, 위 형태들도 학습이 잘 되었다고 판단할 수 있을지 궁금하여 질문드립니다! 감사합니다.
-
미해결[PyTorch] 쉽고 빠르게 배우는 NLP
batch size 질문이 있습니다!
안녕하세요. 좋은 강의 열어주셔서 감사합니다.batch size를 크게할 경우 학습속도가 더 빨라질것 같은데, 맞나요? batch size와 모델 성능과의 상관관계도 있을까요?
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
early stopping 코드 문의
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. if val_loss < early_stopping_loss: torch.save(resnet.state_dict(), PATH) early_stopping_train_loss = train_loss early_stopping_val_loss = val_loss early_stopping_epoch = epoch 강사님 안녕하세요.위 코드에 궁금한 점이 있어서 질문드립니다.위 코드의 4번째 줄에서 아래와 같이 early_stopping_loss 변수를 업데이트 해줘야 하는게 아닌지 궁금합니다.early_stopping_loss = val_loss지금 코드 상으로는 early_stopping_loss가 업데이트 되는 부분이 없어보여서요. 지금 코드로는 모든 epoch에서 if 문에 들어가는것이 아닐지 질문드립니다! 감사합니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
예측 그래프
예측 그래프가 이렇게 나오는데, 뭐가 문제인지를 모르겠어요... 도와주세요...