묻고 답해요
161만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Soft max Class score 질문입니다!
오른쪽 처럼 car: 0.8 이라고 되어있는데 이는 vgg/resnet 학습시에 label 데이터와의 대조를 통하여 산출한 값인가요?현업에서쓰는 label 데이터는 주로 어떤걸 쓰는지 궁금합니다!
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Cofidence threshhold 질문입니다!.
오른쪽 0.9 흰색 박스 안에 차의 Confidence threshold를 0.9라는 값이 나오는 것은 "유사도 90%미만의 이미지는 적용 하지 않는다."의 의미로 해석을 했는데, 이 때도 Object Localization을 통해 바운더리 박스를 찾고 난 뒤 그 이미지와의 유사도가 90%이하면 버린다. 라고 해석했는데 맞나요?
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
회귀 문제 해결 시 딥러닝 vs 머신러닝 질문드립니다.
안녕하세요. 권철민 선생님.저는 회사에서 업무 적용을 위해 머신러닝과 딥러닝을 공부하고 있습니다.그동안 딥러닝은 매우 방대한 데이터와 복잡한 차원 연산이 필요한 이미지 처리 등에 활용되고 머신러닝은 비교적 정형화된 데이터의 회귀, 분류 등에 활용되는 것으로 알고 있었습니다.근데 최근 상사로부터 딥러닝을 이용해 데이터를 회귀 분석하라고 요구 받았습니다. 머신러닝과 딥러닝을 혼동하셔서 그렇게 말씀하신 건지는 모르겠습니다만..이에 어떤 경우에는 딥러닝으로, 또는 머신러닝으로 회귀 문제를 푸는 것이 유리한지 두 방법의 장단점을 알고 싶습니다.그리고 만약 딥러닝으로 회귀 문제를 푸는 것이 유리한 경우가 있다면.. 본 강좌에는 CNN 중심으로 설명하고 있는데 타 강의를 참고해야 할까요? ㅠㅠ
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
필터 관련문의
강의 잘 듣고 있습니다.지금 CIFAR 데이터셋 CNN구현 실습 부분을 보고 있으면서 궁금한점 이 생겨 문의드립니다. 학습시 Conv2D, Activation, Maxpooling2D 같은 필터 개수는 어떻게 정의하는건가요 ? param이 어떻게 변하는지는 설명을 잘 해주셔서 이해했는데, Conv2D 등을 통해 필터시 어떤 기준으로 여러번 사용하는지가 이해가 안되내요. 감사합니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
실습환경
오래 전에 공부하려고 결제했다가 이제서야 공부하려는데, 그때 구글 gpu 크레딧을 다 사용해버렸는데 혹시 그냥 주피터에서도 실습할 수 있나요?
-
미해결비전공자를 위한 진짜 입문 올인원 개발 부트캠프
상품업로드 화면 구현 시 이미지 업로드 시점 관련
안녕하세요. 수업 잘 듣고 있습니다!수업관련 질문은 아니지만 일반적인 구현방법도 이런가해서 문의 남겨봅니다^^이미지 업로드 화면에서업로드 할 사진을 선택하면 서버측으로 먼저 이미지를 전송하는 방식으로 구현하셨는데 이미지 선택 시에는 로컬(클라이언트PC)의 이미지로 보여주고 [상품 등록하기] 버튼을 눌렀을 때 서버로 업로드 하면서 DB에 등록하는 것이 어떨까해서요.이미지를 계속 변경하면 서버에 업로드가 되는 듯 하여...문의한번 해봅니다^^ 다른 수강생분들에게도 문제 해결에 도움을 줄 수 있도록 좋은 질문을 남겨봅시다 :) 1. 질문은 문제 상황을 최대한 표현해주세요.2. 구체적이고 최대한 맥락을 알려줄 수 있도록 질문을 남겨 주실수록 좋습니다. 그렇지 않으면 답변을 얻는데 시간이 오래걸릴 수 있습니다 ㅠㅠex) A라는 상황에서 B라는 문제가 있었고 이에 C라는 시도를 해봤는데 되지 않았다!3. 먼저 유사한 질문이 있었는지 꼭 검색해주세요!
-
미해결비전공자를 위한 진짜 입문 올인원 개발 부트캠프
length 오류
콘솔 결과와 error가 같이 출력됩니다!
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
Tensorflow c++과 subclassing에 관해 질문드립니다.
선생님 안녕하세요! 새해 복 많이 받으세요!!올려주신 강의 정말 감사드립니다. 저는 선생님 강의를 파이썬 머신러닝 부터 컴퓨터 비전, CNN을 통해 혼자 딥러닝을 공부하고 있는 전자공학 전공 학생입니다.앞으로의 진로와 공부 방향에 관해 몇가지 질문을 드리고 싶습니다.현재 선배들 중 제조업(반도체,자동차, 배터리)에 종사하는 선배 중 딥러닝쪽 업무를 하는 선배들로 부터 요즘은 모델링을 파이썬으로 하지만 C++을 이용해서 많이 진행한다고 하고, Tensorflow를 더 잘 사용하기 위해서는 subclassing을 통한 모델을 만들 수 있어야 한다고 들었습니다. (https://www.tensorflow.org/guide/keras/custom_layers_and_models)하지만 인터넷으로 검색을 해봐도 Tensorflow와 C++을 연동해서 사용하는 경우에 대한 정보를 얻기 힘들고 subclassing 또한 정보를 얻기 어려웠습니다. 혹시 관련하여 알고계신 정보가 있다면 공부방법과 강의계획이 있으신지 여쭤봐도 될까요?
-
미해결비전공자를 위한 진짜 입문 올인원 개발 부트캠프
react-router-dom link클릭시 이동이 안되는 오류
안녕하세요 강사님해당 상품을 클릭했을때 url은 바뀌지만 상품상세페이지로 화면은 바뀌지 않는 오류가 발생했습니다(새로고침하면 화면이 바뀌긴 합니다)다른 수강생들의 비슷한 질문답변을 참고하여 <React.StrictMode>를 지워도보고 react-router-dom 버전도 5.2.0이고 Route path도 "/products/:id"라고 적었는데 여전히 오류가 해결되지 않습니다https://github.com/kanghanju/grab-market-client/commit/01c0657f4f64398b47493c1b2c3b44836bf1a785#여기는 Link태그 해당 수업코드 파일입니다!
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
tensorflow api 질문
안녕하세요 교수님. 최근에 텐써플로우로 작업을 해야할 필요가 있어서 텐서플로우 도커를 사용하여 작업을 진행하고 있습니다. 작업을 함에 있어서 최근에 api가 이상하게 바뀐거같아서 여쭈어봅니다. 코렙에서 또한 해당 에러가 있는거 같아서 혹시 해결을 하셨는지 궁금해서 여쭈어봅니다. 현재 쓰고 있는 버전은 2.11.0입니다 <바뀐 api><기존 api>작동은 하지만 하위 함수들을 자동적으로 호출을 못해오는 현상
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
실습 동영상 관련 질문
#Xception 모델 학습, 성능평가 및 예측 후 결과 분석하기 안녕하세요 선생님선생님의 코딩을 토대로 실습연습을 하고 있는데 질문이 있습니다 1.검증 데이터 성적이 너무 높으면 이 부분은 과적합이라고도 볼 수 있을까요(test-score가 아니라도)? 아니면 데이터의 양이 그냥 너무 적어서 발생하는 것일까요? (early stop으로 16에서 멈추고 val score = 0.97이 나옵니다)*데이터 크기: (5856, 2) 2.해당 자료가 0또는 1인데 (정상폐, 폐렴폐 ct)인데 loss =binary_crossentropy를 쓰면 될까요? (만약 categorical_crossentropy를 쓰면 문제가 발생하나요?) 3.만약에 데이터가 불균형하면 머신러닝에서 배웠던 것 처럼 -양성 데이터를 판별하는게 중요하다고 하면 metrics=['accuracy'] 이부분을 precision으로 할 수 있을까요? (반대로 음성이면 재현율)*model.compile(optimizer=Adam(lr=initial_lr), loss='binary_crossentropy', metrics=['accuracy'])4.선생님이 여기 실습에서 해당 데이터를 local? 영역에 넣으시고 분석하셔서 불러오는데 시간을 많이 줄인 것을 보았는데 바탕화면에 있는 데이터도 선생님이 하신 것 처럼 불러올 수 있을까요? 아니면 구글코랩처럼 따로 경로가 있을까요? (데이터를 불러오는데 1초이상이 걸립니다..) 감사합니다
-
미해결U-Net 구현으로 배우는 딥러닝 논문 구현 with TensorFlow 2.0 - 딥러닝 의료영상 분석
강의 자료
93x0928@gmail.com으로 강의 자료를 받아볼 수 있을까요?
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
모듈에서 제공하는 것 외 추가적인 Pretrain model 적용방법
안녕하십니까! 배운내용 바탕으로 프로젝트 해보는 와중 해결되지 않는 부분이 있어 문의드립니다.pytorch에서 densenet(pytorch 기본제공)과 SWIN-transformer(pytorch 미제공, git에 공유된 모델 활용)을 backbone으로 활용하고 싶습니다.swin-unet처럼 모듈에서 제공하지 않는 모델의 경우 어떤식으로 코드를 작성해야할까요?dictionary 형태의 pth 파일이라 *****.load_state_dict('~~~~.pth')을 활용해야할것 같은데 *****부분에 모델을 넣어줘야되는데 기본제공 모듈이 아니라 어떤식으로 해야할지 감이 오지 않습니다. 1번 문제가 해결이 된다면, densenet과 swin-transformer을 sequential 형태로 조합하여 pretrain으로 시키고 싶은데 어떻게 접근을 하면 될까요? 아래 코드에서 backbone 부분 어떻게 해야할지 방향 잡아주시면 너무 감사할것 같습니다.path = '/content/drive/MyDrive/swin_tiny_patch4_window7_224.pth' #swin-Transformer 모델 pretrained_weights = torch.load(path, map_location='cpu') class ImgFeatureExtractor(nn.Module): def __init__(self): super(ImgFeatureExtractor, self).__init__() # self.backbone = models.efficientnet_b0(pretrained=True) self.backbone = models.densenet201(pretrained=True) self.backbone = *****.load_state_dict(pretrained_weights) self.embedding = nn.Linear(1000,512) def forward(self, x): x = self.backbone(x) x = self.embedding(x) return x
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
메모리 부족으로 Faster R-CNN 학습을 할 수 없습니다
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. (노션에 다운받을 수있습니다)mm_faster_rcnn_train_kitti.ipynb여기에 바로 올리고 싶었는데 인프런이 허용을 안해주네요 MMdetection의 이해와 Faster R-CNN 적용 실습 부분입니다. 문제 및 상황인식:학원 가상환경에서 문제메모리가 부족하다고 뜨면서 커널이 끊겼습니다.(목차 3번 사진 참고)저는 이 문제가 배치 사이즈가 커서 생긴 문제라고 보았습니다. 하지만 아래의 목차 5번과 같이 배치 사이즈를 줄여도 메모리 부족이 뜹니다. 어떻게 하면 해결할 수있을까요?배치나 기타 하이퍼 파라미터를 조정해도 학원 가상환경의 메모리 자체가 적어서 생기는 문제일까요? (참고로 구글 코렙에서는 잘 작동했습니다. 다만 GPU 사용량이 초과해서 None으로 학습을 하면 cuda를 못쓴다고 에러가 납니다.) 목차상황설명상황설명문제발생 및 사진해결시도1, 실패해결시도2, 실패 (상황설명) 저는 AI 국비지원 학원을 다니는 학생입니다. 학원에서 배우는 것만으로는 MMdetecrtion을 다룰 수 없어서 이 강의를 듣게 되었습니다. 이걸 듣고 난 후 MMdetecrtion으로 학원 과제를 수행하고자 했습니다. 그리고 구글 코랩은 공짜로 돌리다가 GPU 제한으로 못쓰고 학습이 안되었습니다.(상황설명) 학원에서 아래와 같은 성능의 전용 가상환경을 제공합니다. 그래서 경로만 조정하고 그대로 똑같이 돌렸습니다.3. (문제발생)그런데 학습을 하는데 아래의 그림과 같이 메모리가 부족하다고 뜨면서 커널이 끊겼습니다. 4. (해결시도1, 실패) cfg.data.samples_per_gpu = 4 넣기아래의 그림과 같이 cfg.data.samples_per_gpu = 4를 넣었지만,auto_scale_lr = dict(enable=False, base_batch_size=16)는 그대로 16이었습니다. 일단 무시하고 돌려보았지만 여전히 실패했습니다. 5.( 해결시도2, 실패) defaul_runtime.py에 들어가서 batch size를 1로 바꾸기그결과 auto_scale_lr = dict(enable=False, base_batch_size=1)로 바뀌었습니다. 학원 가상환경에서 문제메모리가 부족하다고 뜨면서 커널이 끊겼습니다.(목차 3번 사진 참고) 어떻게 하면 좋을까요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mmcv v2.0.0 문제
선생님 안녕하세요 좋은 강의 감사합니다.from mmdet.apis import init_detector, inference_detector import mmcv를 하면 아래와 같은 경고 메시지가 뜨는데요./usr/local/lib/python3.7/dist-packages/mmcv/__init__.py:21: UserWarning: On January 1, 2023, MMCV will release v2.0.0, in which it will remove components related to the training process and add a data transformation module. In addition, it will rename the package names mmcv to mmcv-lite and mmcv-full to mmcv. See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md for more details. 'On January 1, 2023, MMCV will release v2.0.0, in which it will remove ' 혹시 이것에 맞춰서 코드의 내용이 많이 변할까요? 뒷부분은 이름이 바뀐다는 것 같은데, 앞부분에서 "it will remove components related to the training process and add a data transformation module." 부분이 무슨뜻인지 잘 모르겠어서요!
-
해결됨U-Net 구현으로 배우는 딥러닝 논문 구현 with TensorFlow 2.0 - 딥러닝 의료영상 분석
evaluate isbi 2012.py 실행관련 문의드립니다.
안녕하세요. evaluate 중 문제가 발생해서 문의를 드립니다. train과 evaluate py의 경로 부분은 아래와 같이 수정을 하였습니다.flags.DEFINE_string('checkpoint_path', default='saved_model_isbi_2012/unet_model', help='path to a directory to save model checkpoints during training') 그 결과 생성된 파일은 다음과 같습니다. python evaluate_isbi_2012.py실행 결과 나타난 오류는 다음과 같습니다. Traceback (most recent call last):File "evaluate_isbi_2012.py", line 89, in <module>app.run(main)File "C:\Users\Song\anaconda3\envs\unet_test3\lib\site-packages\absl\app.py", line 308, in runrunmain(main, args)File "C:\Users\Song\anaconda3\envs\unet_test3\lib\site-packages\absl\app.py", line 254, in runmainsys.exit(main(argv))File "evaluate_isbi_2012.py", line 66, in mainunet_model.load_weight(FLAGS.checkpoint_path)AttributeError: 'UNET_ISBI_2012' object has no attribute 'load_weight' 해결방법 알려주시면 정말 감사하겠습니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
tensorboard error
안녕하세요 강사님,저는 보완 문제로 폐쇄 네트워크환경(소스내에서 downloac 차단)에서 object detection AutoML을 실행하고 있습니다. yolov3 소프 포팅후 자체 host pc에서 running이 되도록 해야 하는데 환경구축이 만만치 않네요.. 모든 datasets zip 파일들을 따로 다운 받아 집에서는 vs code나 jupyter notebook으로 작업하고 회사에서는 kubeflow notebook 환경에서 테스트 진행하고 있습니다.질문 1: coco val & coco test에서 --data coco.yaml 대신 --data coco128.yaml로 실행해도 되는 건지 알고 싶습니다.질문 2: train.py 전에 tensorboard launch 시 에러가 나옵니다. 해결 방법을 알려 주시면 감사 하겠습니다.질문 3: 질문2의 에러가 해결되어 train.py 실행 되는 건지, 그리고 coco test를 하지 않고 바로 train.py를 진행해도 되는건지 알고 싶습니다. 집에서 vs code나 jupyter notebook에서 train.py 실행을 하면 아래 같은 에러가 나옵니다.coco128.yaml 에서 download 차단 없이 진행하면 kernel 이 죽어 restarting 이 되고 진행이 안되네요..download 차단하면 맨 아래 캡쳐 화면 처럼 멈쳐 버리고 Dead kernel 이 되어 버립니다. 혹 질문 2의 tensorboard 에러와 관련이 있는 건지 알려 주시기 바랍니다.질문 4: 마지막 질문인데.. 이 질문은 강의 내용에서 벗어나는 질문 이지만 해결을 못하고 있어 조언을 듣고자 합니다. 로컬 호스트 환경에서 yolov5 train.py가 잘 돌고 있는 상황에서 docker 이미지 빌디시 Dockerfile의 베이스 이미지를 FROM nvcr.io/nvidia/pytorch:21.10-py3 로 하면 container 가 바로 죽고 실행이 안되며, FROM python:3.9로 하면 container가 running 되는데 train.py 가 실행되다 epochs를 하다 멈쳐 버립니다. 이 문제가 gpu 문제인건지 아님 단지 memory 부족 문제인지 잘 판단이 안되는데.. 소중한 의견 주시면 감사 하겠습니다.
-
미해결비전공자를 위한 진짜 입문 올인원 개발 부트캠프
postman에서 no environment
postman에서 우측 상단의 no environment를 클릭해도다른 항목이 나오지 않습니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
RCNN에서 손실함수 구하기
안녕하세요?RCNN의 경우 classification에 대한 loss는 구할 수 없고 다만 bounding box regression은 구할 수 있는지 이유가 궁금합니다.RCNN의 경우는 최종 값을 판별하는 분류기가 CNN과 분리되어 있어서 역전파를 할 수 없어 classification의 경우는 오차 함수를 구할 수 가 없다고 이해했습니다. 그런데 어떻게 bounding box regression은 Loss 값을 구할 수 있는지 궁금합니다. 구한 Loss 값으로 CNN이 업데이트가 가능한지요?바쁘신 와중에 답변 주셔서 감사합니다^__________^
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Training dataset 관련
안녕하세요 강사님, 항상 좋은 수업 잘 듣고있습니다. mmdetection으로 Mask-RCNN + Resnet-101 model Training중 Training Dataset 구성 관련하여 질문있습니다. 제가 기존 model을 학습시키는데 사용된 모든 이미지 데이터는 1280x720 해상도였습니다.그러나 이번에 수집한 데이터는 2208x1242 해상도입니다. Q1. 각기 다른 해상도로 촬영된 이미지들을 하나의 데이터셋으로 만들고, 네트워크에 학습시켜도 문제가 없을까요?당연히 COCO dataset이나 PASCAL dataset을 살펴봐도 다양한 해상도의 이미지를 annotation하여 구성하였기 때문에 문제될 건 없다고 생각하는데일반적으로, 1280x720 해상도 이미지를 추론하는 경우, 동일한 해상도의 데이터셋으로 학습된 모델이 성능이 더 우수한지 궁금해서요.ex) 1280x720 이미지 추론시, 1280x720 해상도만으로 이루어진 데이터셋으로 학습된 model 사용1920x1080 이미지 추론시, 1920x1080 해상도만으로 이루어진 데이터셋으로 학습된 model 사용 2208x1242 이미지 추론시, 2208x1242 해상도만으로 이루어진 데이터셋으로 학습된 model 사용만약 일반적으로 이렇게 한다면, 새로 획득한 데이터가 아닌 라벨링되지 않은 1280x720해상도 데이터들을 더 annotation 작업 진행하려 합니다.