묻고 답해요
160만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
MF알고리즘에서 질문이있습니다.
안녕하세요! 강의를 듣다 응용해보는 과정에서 질문이있습니다. 한번 학습시킨 모델에서 사용자의 데이터를 더 추가해서 동적으로 모델을 업데이트 시키고 싶습니다. 그래서 온라인학습을 진행하려고 하는데, sgd메서드에 데이터를 전달하여 업데이트를 진행하는 방식은 어떻게 생각하시는지 여쭤봐도되겠습니까? 감사합니다!
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
ean_rating = np.dot(sim_scores,movie_ratings) / sim_scores.sum() 부분에서 질문이있습니다.
ean_rating = np.dot(sim_scores,movie_ratings) / sim_scores.sum()이부분에서 sim_scores.sum()값은 항상 0이 아닌게 보장이 되는건가요? 직접 데이터를 생성해서 테스트 해보면 음수이거나 0일때도 있더라구요!... 데이터가 잘못된건지 아니면 0일수도 있는건지 궁금합니다.
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
트랜스포머 실습 파일 실행 시 에러가 발생합니다.
130_Transformer.ipynb를 코랩 환경에서 실행하는데 25번째 코드 셸을 실행하면 에러가 발생합니다.위의 모든 코드 셸을 실행한 뒤에 다음 코드를 실행하면 ValueError: Exception encountered when calling PositionalEmbedding.call().Invalid dtype: <property object at 0x7d6f6aff73d0> Arguments received by PositionalEmbedding.call(): • x=tf.Tensor(shape=(64, 110), dtype=int64) 이런 에러가 발생합니다. 어디가 문제이며 어떻게 해결을 해야 할까요? # 포르투갈어와 영어를 위한 위치 인코딩 임베딩 레이어 생성 embed_pt = PositionalEmbedding(vocab_size=tokenizers.pt.get_vocab_size(), d_model=512) embed_en = PositionalEmbedding(vocab_size=tokenizers.en.get_vocab_size(), d_model=512) # 포르투갈어 입력에 대한 임베딩 적용 pt_emb = embed_pt(pt) # 영어 입력에 대한 임베딩 적용 en_emb = embed_en(en)
-
미해결모두를 위한 대규모 언어 모델 LLM Part 3 - 구글 제미나이(Google Gemini) API, OpenAI API와 젬마(Gemma)로 AI 어플리케이션 만들기
강의 슬라이드 공유가 가능할까요?
LLM Part 1 과 Part 2 는 강의 슬라이드를 공유해 주셨는데 Part 3 는 강의 슬라이드가 없어서 문의드립니다.
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
Fine-tuning 모델 성능 지표
llama2 를 fine-tuning 했을때, 다른 모델들 처럼 f1 스코어나 혹은 다른 성능 지표를 이용해 성능을 정량화 할 수 있나요?어떤 방법이 있고 어떻게해야 fine-tuning 한 모델의 성능을 정량적으로 지표화 할 수 있을까요?
-
해결됨딥러닝 CNN 완벽 가이드 - TFKeras 버전
테스트 데이터셋 predict의 'NoneType' object has no attribute 'shape' 오류
안녕하세요.테스트 데이터셋을 predict하는 부분에서 오류가 나서 질문드립니다. test_path = test_df['path'].values test_ds = Plant_Dataset(image_filenames=test_path, labels=None, image_size=IMAGE_SIZE, batch_size=BATCH_SIZE, augmentor=None, shuffle=False, pre_func=xcp_preprocess_input) preds = xcp_model_01.predict(test_ds) --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[40], line 7 3 test_path = test_df['path'].values 4 test_ds = Plant_Dataset(image_filenames=test_path, labels=None, image_size=IMAGE_SIZE, batch_size=BATCH_SIZE, 5 augmentor=None, shuffle=False, pre_func=xcp_preprocess_input) ----> 7 preds = xcp_model_01.predict(test_ds) File /opt/conda/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py:123, in filter_traceback.<locals>.error_handler(*args, **kwargs) 120 filtered_tb = _process_traceback_frames(e.__traceback__) 121 # To get the full stack trace, call: 122 # `keras.config.disable_traceback_filtering()` --> 123 raise e.with_traceback(filtered_tb) from None 124 finally: 125 del filtered_tb File /opt/conda/lib/python3.10/site-packages/tree/__init__.py:435, in map_structure(func, *structures, **kwargs) 432 for other in structures[1:]: 433 assert_same_structure(structures[0], other, check_types=check_types) 434 return unflatten_as(structures[0], --> 435 [func(*args) for args in zip(*map(flatten, structures))]) File /opt/conda/lib/python3.10/site-packages/tree/__init__.py:435, in <listcomp>(.0) 432 for other in structures[1:]: 433 assert_same_structure(structures[0], other, check_types=check_types) 434 return unflatten_as(structures[0], --> 435 [func(*args) for args in zip(*map(flatten, structures))]) AttributeError: 'NoneType' object has no attribute 'shape' test_image_batch, test_label_batch = next(iter(test_ds))print(test_image_batch.shape, test_label_batch)의 출력이 (32, 224, 224, 3) Nonehistory.history['val_auc']의 출력이 [0.9417113065719604, 0.9647012948989868, 0.9738287925720215, 0.9816075563430786, 0.9799161553382874, 0.9804703593254089, 0.9877450466156006, 0.9854006767272949, 0.9803326725959778, 0.9843235611915588]학습도 완료됐고 Plant_Dataset도 제대로 작동하고 있습니다.AttributeError:'NoneType' object has no attribute 'shape'으로 어느 부분이 문제가 되는지 질문드립니다.
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
섹션 7-4 당뇨병
당뇨병 문제에서 직접 이상치 제거하는 게 손실 함수 줄이는데 도움이 될거라고 생각했는데 오히려 너무 커져버려서 왜 그런 건지 궁금합니다. 또 직접 제거하는 방식 말고 다르게 이상치 탐지하는 게 딥러닝에는 따로 있나요?
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
score를 실행하면 항상 nan이 출력됩니다
안녕하세요! score를 실행할때마다 nan이 출력이되서 잘못쓴 부분이 있나 여러번 체크해봤는데 도저히 모르겠어서 질문남겨봅니다..import pandas as pdimport osimport numpy as npfrom sklearn.model_selection import train_test_split# 사용자 u.user파일을 DataFrame으로 열기base_src = './drive/MyDrive/RecoSys/Data'os.listdir('./drive/MyDrive/RecoSys/Data')###### 데이터불러오기 ###### os.path.join -> 경로 합치기u_user_src = os.path.join(base_src,'u.user')u_cols = ['user_id','age', 'sex', 'occupation','zip_code']users = pd.read_csv(u_user_src,sep='|',names = u_cols,encoding='latin-1')users = users.set_index('user_id')users.head()u_item_src = os.path.join(base_src,'u.item')i_cols = ['movie_id','title','release date','video release date','IMDB URL','unknown','Action','Adventure','Animation','Children\'s','Comedy','Crime','Documentary','Drama','Fantasy','FilmNoir','Horror','Musical','Mystery','Romance','Sci-Fi','Thriller','War','Western']movies = pd.read_csv(u_item_src,sep='|',names = i_cols,encoding='latin-1')movies = movies.set_index('movie_id')movies.head()u_data_src = os.path.join(base_src,'u.data')r_cols = ['user_id', 'movie_id', 'rating', 'timestamp']ratings = pd.read_csv(u_data_src,sep ='\t',names = r_cols,encoding='latin-1')# ratings = ratings.set_index('user_id')ratings.head()# 실제값과 예측값을 넣기def RMSE(y_true, y_pred):return np.sqrt(np.mean((np.array(y_true) - np.array(y_pred)) **2 ))# # 모델별 RMSE를 계산 하는 함수def score(model, neighbor_size=0):id_pairs = zip(x_test['user_id'], x_test['movie_id'])y_pred = np.array([model(user,movie,neighbor_size) for (user,movie) in id_pairs])y_true=np.array(x_test['rating'])return RMSE(y_true,y_pred)# 데이터셋 만들기x = ratings.copy()y = ratings['user_id']x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.25,stratify=y)ratings_matrix = x_train.pivot(index = 'user_id', columns = 'movie_id', values = 'rating')# 코사인 유사도 계산from sklearn.metrics.pairwise import cosine_similarity## 코사인 유사도를 구하기 위해 rating값을 복제하고, 계산 시 Nan값 에러 대비를 위해 결측치를 0으로 대처matrix_dummy = ratings_matrix.copy().fillna(0)## 모든 사용자 간 코사인유사도를 구함user_similarity = cosine_similarity(matrix_dummy,matrix_dummy)## 필요한 값 조회를 위해 인덱스 및 칼럼명 지정user_similarity = pd.DataFrame(user_similarity,index=ratings_matrix.index, columns=ratings_matrix.index)# Neighbor size를 정해서 예측치를 계산하는 함수def CF_knn(user_id, movie_id, neighbor_size=0):if movie_id in ratings_matrix.columns:sim_scores = user_similarity[user_id].copy()movie_ratings= ratings_matrix[movie_id].copy()none_movie_ratings = movie_ratings[movie_ratings.isnull()].index# print(none_movie_ratings)moive_ratings = movie_ratings.dropna()sim_scores = sim_scores.drop(none_movie_ratings)# print(sim_scores)# 여기까지는 동일(0일 경우는 일반적인 cf)if neighbor_size == 0:mean_rating = np.dot(sim_scores,movie_ratings) / sim_scores.sum()else:# 나와 유사한 사람이 없는경우if len(sim_scores)>1:# 5명을 10개로 나눌수 없으니까 최소값으로 해줘야한다neighbor_size = min(neighbor_size,len(sim_scores))sim_scores = np.array(sim_scores)movie_ratings = np.array(movie_ratings)# simscore가 작은 순서대로 작은 유저아이디를 넣는다user_idx = np.argsort(sim_scores)sim_scores = sim_scores[user_idx][-neighbor_size:]## sim_scores 즉, 유사도를 뽑아냈으면 무비평가값을 뽑아내movie_ratings = movie_ratings[user_idx][-neighbor_size:]mean_rating = np.dot(sim_scores, movie_ratings) / sim_scores.sum()else:mean_rating = 3.0# movie_id가 rating train pivot table에 포함되지 않을 경우else:mean_rating = 3.0return mean_rating# 정확도 계산score(CF_knn,neighbor_size=30)#### 실제 주어진 사용자에 대해 추천을 받는 기능 구현(테스트 데이터와 훈련데이터를 만들필요가없다) ####ratings_matrix = ratings.pivot_table(values='rating', index = 'user_id', columns='movie_id')matrix_dummy = ratings_matrix.copy().fillna(0)user_similarity = cosine_similarity(matrix_dummy,matrix_dummy)user_similarity = pd.DataFrame(user_similarity,index = ratings_matrix.index, columns=ratings_matrix.index)def recom_movie(user_id, n_items, neighbor_size):# 해당 유저가 평가한 영화가 나온다user_movie= ratings_matrix.loc[user_id].copy()for movie in ratings_matrix.columns:# 현재 영화평점이 null이 아닌 경우 -> 영화를 본경우는 추천 리스트에서 제외하기 위해if pd.notnull(user_movie.loc[movie]):user_movie.loc[movie] = 0else:user_movie.loc[movie] =CF_knn(user_id,movie,neighbor_size)movie_sort = user_movie.sort_values(ascending=False)[:n_items]recom_movie = movies.loc[movie_sort.index]recommendation = recom_movie['title']return recommendationrecom_movie(user_id = 729, n_items=5, neighbor_size=30)score(CF_knn,neighbor_size=30) + gpt한테 물어보니 none_rating_idx = movie_ratings[movie_ratings.isnull()].index moive_ratings = movie_ratings.dropna() sim_scores = sim_scores.drop(none_rating_idx)이 부분을 movie_ratings = movie_ratings.dropna() sim_scores = sim_scores.loc[movie_ratings.index]이렇게 변경해라해서 수정했더니 nan이 아닌 실수값이 나오기는 하는데 올바른 방법인지를 모르겠습니다. 그래도 같은 방법인거같긴 한데 어디서 차이가 발생하는건지 잘 모르겠습니다!
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
user_id가 인덱스범위를 벗어난 값으로 들어옵니다
# Gender 기준 추천 def cf_gender(user_id,movie_id): if movie_id in rating_matrix.columns: # print(user_id) gender = users.loc[user_id]['sex'] if gender in g_mean[movie_id].index: gender_rating = g_mean[movie_id][gender] else: gender_rating = 3.0 # 훈련셋에 movie_id가 없을수도있다. 25%만 할당했기때문에 else: gender_rating = 3.0 return gender_rating score(cf_gender)안녕하십니까! Gender기준 추천쪽에서 오류가 발생해서 질문드립니다.이 부분에서 users는 942까지만 인덱스가 있는데, user_id는 943이 들어와서 ValueError: 943 is not in range라는 오류가 발생하더라구요..!예외처리를 따로 해줘야하는건가요?
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
인덱스 칼럼은 어떻게 접근해야하나요
# 데이터 train, test set 분리 from sklearn.model_selection import train_test_split x = ratings.copy() y = ratings['user_id']저는 ratings의 user_id를 인덱스로 설정하고 저렇게 접근을 하니 keyError가 발생합니다.인덱스를 설정한 칼럼은 어떻게 접근해야하나요?
-
미해결최신 논문과 유튜브 동영상으로 만드는 2D Pose estimation 실전 프로젝트 따라하기
키포인트 추가관련
안녕하세요, dcpose에 발 키포인트를 추가하여 학습시키고 싶은데, 1. posetrack 데이터셋 없이 가능한지요? 그래도 posetrack 데이터셋이 필요해서 찾는데 공식 네트워크에서는 찾을 수가 없습니다. 확보할 수있는 방법이있을까요? 제 이메일은 valtop@gmail.com 입니다. 감사합니다.* 질문에 대한 답변은 일주일 정도 걸릴 수 있습니다.
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
제공해주신 데이터링크에 들어가면 404가 뜨는데요?
제공해주신 데이터링크에 들어가면 404가 뜹니다. 확인부탁드립니다
-
미해결파이썬을 활용한 머신러닝 딥러닝 입문
tf.data 를 이용한 shuffling and batch 구성 관련 문의
좋은강의 감사합니다.tf.data 를 이용한 shuffling and batch 구성 관련 문의 드립니다.tf.data 를 이용한 shuffling and batch 구성하는 경우의 코드(아래코드)를tf.data 를 이용한 shuffling and batch 구성하지 않는 경우로 변경하는 경우 아래코드를 어떻게 변경해야하나요?-아래-train_ds = tf.data.Dataset.from_tensor_slices((X_train_scaled, y_train_onehot))\.shuffle(10000).batch(128)test_ds = tf.data.Dataset.from_tensor_slices((X_test_scaled, y_test_onehot)).batch(128)..history = model.fit(train_ds, epochs=5, validation_data=test_ds)답변부탁드립니다.2024.3.9
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
코드 자동완성 속도가 상당히 느린데 개선할 방법이 있을까요?
가령 item_similarity라는 변수를 칠 때 item까지만 치면 item으로 시작하는 변수들의 추천목록을 보여주는데 이 목록이 띄워지는 속도가 약 4초 정도 걸립니다. 강의영상에서 보면 타이핑을 하자마자 바로바로 뜨는 것을 확인할 수 있었는데 혹시 개선할만한 방안이 있을까요?
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
ValueError: setting an array element with a sequence
아래 부분에서 불균일한 데이터임을 나타내는 에러가 발생하는데 이유를 못찾겠습니다.전체 코드입니다.from inspect import Signature import os import pandas as pd import numpy as np from sklearn.model_selection import train_test_split ### 데이터 불러오기 및 필요한 함수 정의 ### # user 데이터 base_src = 'drive/MyDrive/RecoSys/Data' u_user_src = os.path.join(base_src, 'u.user') u_cols = ['user_id', 'age', 'sex', 'occupation', 'zip_code'] users = pd.read_csv(u_user_src, sep='|', names=u_cols, encoding='latin-1') users = users.set_index('user_id') u_item_src = os.path.join(base_src, 'u.item') i_cols = ['movie_id','title','release date','video release date', 'IMDB URL','unknown','Action','Adventure','Animation', 'Children\'s','Comedy','Crime','Documentary','Drama','Fantasy', 'Film-Noir','Horror','Musical','Mystery','Romance','Sci-Fi','Thriller','War','Western'] movies = pd.read_csv(u_item_src, sep='|', names=i_cols, encoding='latin-1') movies = movies.set_index('movie_id') u_data_src = os.path.join(base_src, 'u.data') r_cols = ['user_id', 'movie_id', 'rating', 'timestamp'] ratings = pd.read_csv(u_data_src, sep='\t', names=r_cols, encoding='latin-1') # 정확도(RMSE)를 계산하는 함수 def RMSE(y_true, y_pred): return np.sqrt(np.mean((np.array(y_true) - np.array(y_pred))**2)) # 유사집단의 크기를 미리 정하기 위해서 기존 score 함수에 neighbor_size 인자값 추가 def score(model, neighbor_size=0): id_pairs = zip(x_test['user_id'],x_test['movie_id']) # user_id와 movie_id 쌍을 만든다 y_pred = np.array([model(user, movie, neighbor_size) for (user, movie) in id_pairs]) y_true = np.array(x_test['rating']) return RMSE(y_true,y_pred) # 데이터셋 만들기 x = ratings.copy() y = ratings['user_id'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, stratify=y) rating_matrix = x_train.pivot(index='user_id', columns='movie_id', values='rating') # 코사인 유사도 계산 # train set의 모든 가능한 사용자 pair의 cosine similarity 계산 from sklearn.metrics.pairwise import cosine_similarity matrix_dummy = rating_matrix.copy().fillna(0) user_similarity = cosine_similarity(matrix_dummy, matrix_dummy) user_similarity = pd.DataFrame(user_similarity, index=rating_matrix.index, columns=rating_matrix.index) ### 사용자 평가 경향을 고려한 함수 ### rating_mean = rating_matrix.mean(axis=1) rating_bias = (rating_matrix.T - rating_mean).T # 평점 평균에 대한 편차 ##################################### rating_binary_1 = np.array(rating_matrix > 0).astype(float) # 0 초과의 값이 있는 셀은 true, 나머지는 false로 rating_binary_2 = rating_binary_1.T counts = np.dot(rating_binary_1, rating_binary_2) counts = pd.DataFrame(counts, index=rating_matrix.index, columns=rating_matrix.index).fillna(0) def CF_knn_bias_sig(user_id, movie_id, neighbor_size=0): if movie_id in rating_bias: sim_scores = user_similarity[user_id].copy() movie_ratings = rating_bias[movie_id].copy() no_rating = movie_ratings.isnull() # 평가가 없는 common_counts = counts[user_id] # 주어진 user_id를 기준으로 다른 user들과 공통으로 평가한 영화의 개수들을 담은 배열 low_significance = common_counts < SIG_LEVEL # 공통 평가한 영화 개수가 미리 정해진 level보다 낮은 사용자에 대해 false 처리 none_rating_idx = movie_ratings[no_rating | low_significance].index # 추천 알고리즘에서 제외할 인덱스 추출 movie_ratings = movie_ratings.drop(none_rating_idx) sim_scores = sim_scores.drop(none_rating_idx) if neighbor_size == 0: prediction = np.dot(sim_scores, movie_ratings) / sim_scores.sum() prediction = prediction + rating_mean[user_id] else: if len(sim_scores) > MIN_RATINGS: neighbor_size = min(neighbor_size, len(sim_scores)) sim_scores = np.array(sim_scores) # 행렬 연산을 위해 배열 형태로 변환 movie_ratings = np.array(movie_ratings) user_idx = np.argsort(sim_scores) sim_scores = sim_scores[user_idx][-neighbor_size:] movie_ratings = movie_ratings[user_idx][-neighbor_size:] prediction = np.dot(sim_scores, movie_ratings) / sim_scores.sum() prediction = prediction + rating_mean else: prediction = rating_mean[user_id] else: prediction = rating_mean[user_id] # RMSE 개선을 위한 조정 # if prediction <= 1: # prediction = 1 # elif prediction >= 5: # prediction = 5 return prediction SIG_LEVEL = 3 MIN_RATINGS = 3 score(CF_knn_bias_sig, 30)
-
해결됨(UPDATED) Python을 이용한 개인화 추천시스템 | 추천알고리즘 | 추천인공지능
users에 대한 인덱스 설정 기준
아래 코드와 같이 users에 대해 user_id 칼럼을 인덱스를 설정할 때와 하지 않을 때 각각 다른 부분에서 에러가 납니다. 떄에 따라 인덱스로 잡아야할 때도 있고 잡지 않아야 할때도 있는 거라면 그 기준이 무엇일지 궁금합니다.users = users.set_index('user_id')인덱스로 잡았을 때의 에러)인덱스로 잡지 않았을 때의 에러)
-
해결됨Google 공인! 텐서플로(TensorFlow) 개발자 자격증 취득
env_test 실행시 오류가 발생합니다
윈도우 배치 파일을 통한 가상환경설정에 실패해, 인터프리터 설정을 통한 패키지 설치로 조건에 맞는 가상환경을 설치했습니다. 파이썬 버전은 3.9.0 버전입니다.그 후 env_test 파일을 실행시켰는데import numpy as np import tensorflow as tf from tensorflow.keras.layers import Dense상기한 코드에서 세 번째 코드가 실행되지 않고ModuleNotFoundError: No module named 'tensorflow.keras'라는 오류가 발생합니다. import tensorflow as tf from tensorflow import keras from keras import layers또한 상기한 코드를 실행했을 경우에는ImportError: cannot import name 'keras' from 'tensorflow' (unknown location)라는 오류가 발생합니다.이 상황을 해결할 수 있는 방법을 알려주실 수 있으면 감사하겠습니다.
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
학습이 이상하게 됩니다.
당장 문의드리는 것은 CIFAR10_Pretained이지만 다른 예제를 실행해도 같은 에러가 납니다. tr_data_len = tr_images.shape[0]val_data_len = val_images.shape[0]history = vgg_model.fit(flow_tr_gen, epochs=40,steps_per_epoch=int(np.ceil(tr_data_len/BATCH_SIZE)),validation_data=flow_val_gen,validation_steps=int(np.ceil(val_data_len/BATCH_SIZE)),callbacks=[rlr_cb, ely_cb])) 이 셀을 실행시키면, 이런 식으로 홀수만 학습이 되고 짝수는 학습이 안 됩니다.이 학습시킨 것을 그래프로 나타내면 0이 되었다가 정상적으로 되었다가 반복을 하네요.예전에 예제를 실행시켰을때는 이런 오류가 없었는데 버전이 업데이트되면서 안되는것 같습니다.Adam 함수에 매개변수 lr=을 입력할 때도 에러가 나서 learning_rate=로 변경해야하는 식으로 자잘한 문제도 있습니다.많은 예제에서 같은 오류가 나는 것을 보아 업데이트된 캐글 커널 버전에 맞춰서 코드를 전체적으로 수정하셔야할 필요가 있을것 같습니다.감사합니다. Epoch 1/40 /opt/conda/lib/python3.10/site-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored. self._warn_if_super_not_called() 10/665 ━━━━━━━━━━━━━━━━━━━━ 12s 19ms/step - accuracy: 0.0987 - loss: 3.5617WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1709598886.339819 103 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process. 665/665 ━━━━━━━━━━━━━━━━━━━━ 31s 30ms/step - accuracy: 0.1981 - loss: 2.1133 - val_accuracy: 0.4116 - val_loss: 1.5764 Epoch 2/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 28us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 3/40 7/665 ━━━━━━━━━━━━━━━━━━━━ 12s 18ms/step - accuracy: 0.4141 - loss: 1.5560/opt/conda/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset. self.gen.throw(typ, value, traceback) 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.4451 - loss: 1.4449 - val_accuracy: 0.5769 - val_loss: 1.2619 Epoch 4/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 5/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.5782 - loss: 1.1673 - val_accuracy: 0.5975 - val_loss: 1.1887 Epoch 6/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 17us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 7/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.6474 - loss: 1.0090 - val_accuracy: 0.6819 - val_loss: 1.1508 Epoch 8/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 17us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 9/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.6889 - loss: 0.8978 - val_accuracy: 0.6689 - val_loss: 1.2804 Epoch 10/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 11/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.7189 - loss: 0.8345 - val_accuracy: 0.7216 - val_loss: 1.0568 Epoch 12/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 17us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 13/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.7289 - loss: 0.8169 - val_accuracy: 0.7328 - val_loss: 1.3400 Epoch 14/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 17us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 15/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.7646 - loss: 0.7047 - val_accuracy: 0.6892 - val_loss: 1.1569 Epoch 16/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 17/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.7645 - loss: 0.7083 - val_accuracy: 0.7511 - val_loss: 0.9342 Epoch 18/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 19/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.7857 - loss: 0.6478 - val_accuracy: 0.7740 - val_loss: 0.9626 Epoch 20/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 21/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.8012 - loss: 0.6048 - val_accuracy: 0.7763 - val_loss: 0.7990 Epoch 22/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 23/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.8056 - loss: 0.5998 - val_accuracy: 0.7719 - val_loss: 0.8663 Epoch 24/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 25/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.8196 - loss: 0.5483 - val_accuracy: 0.7731 - val_loss: 0.8920 Epoch 26/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 27/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 13s 19ms/step - accuracy: 0.8313 - loss: 0.5199 - val_accuracy: 0.7960 - val_loss: 0.8204 Epoch 28/40 665/665 ━━━━━━━━━━━━━━━━━━━━ 0s 16us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0000e+00 Epoch 29/40
-
미해결따라하면서 배우는 3D Human Pose Estimation과 실전 프로젝트
cuda toolkit 설치 문제
cuda toolkit 설치 시 터미널에 마지막 명령 실행하면 "E: sub-process /usr/bin/dpkg returned an error code (1) " 메시지 나오면서 종료됩니다. 어떻게 해야 할까요?
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
boston import가 안됩니다
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 버전 다운그레이드를 진행햐였음에도 안됩니다 이게 안되면 나머지도 안되서 진행이 안됩니다 ㅜㅜ