묻고 답해요
160만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결파이썬을 활용한 머신러닝 딥러닝 입문
모델 적용에 대한 문의 사항
안녕하십니까.2월에 인공지능 서비스 모델 설계을 수강후 주신 쿠폰으로 좋은 교육 듣고 있습니다.몇가지 문의 사항이 있어서 연락드립니다.1. 학습된 모델을 “Model 적용” regr.predict()를 사용하여 모델적용 결과를 도출하는게 맞는지요?2. 모델에 지속적인 학습을 위해서는 regr.fit()으로 전체 데이터를 재구성하여 재 학습시키는지, 아니면 추가 데이터만 학습 시키는 방법이 있는지요?예) regr.fit(diabetes_X_curr, diabetes_y_curr)3. . 모델을 계속 적용하여 결과를 도출하고, 학습을 지속적으로 하면서 결정계수가 계속 낮아진다면 어떤 작업을 해야 하는지요?010.Simple Linear Regression 정리 자료
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 질문입니다!
optimizer에서 이미 안장점이나, 최적의 업데이트를 하기 위한 시도와 노력을 하는데 call back을 하는 이유가 '그럼에도 불구하고' 안될 수 있기 때문에 하는건가요?
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
질문사항
맛비님 안녕하세요 ! 궁금사항이 생겨 글 남기게 되었습니다. NVIDIA의 GPU 같은 경우 '쿠다'라는 소프트웨어 플랫폼을 제가 이용해봤습니다. 수업시간에 설명해주신 inference를 위한 NPU 소프트웨어 플랫폼도 학생이 무료로 이용할 수 있는게 있을까요 ?MNIST 모델에 대해 설명해주실때 0~9까지 표현하기 위해 one-hot label을 10bit를 사용하셨는데, 4 bit를 사용해도 0~9가지 다 표현 가능하지 않나요 ?
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 질문입니다!
뒤에 수업까지 듣고 와서 이렇게 다시 질문드립니다!CNN이 Dense layer와 다르게 universal한 피처맵을 만들어 덴스레이어로 보내기 때문에 이미지내 다양한 위치에 있는 object를 찾을 수 있다고 강의를 통하여 배웠는데.그렇다면 이 필터들은 많은 이미지 내에서 다양한 위치에있는 object를 찾아낼 수 있게 끔 업데이트가 되는 것이 맞는지요.만약 맞다면 데이터 전처리를 할 때, 해당 물체의 위치가 되도록 가변적이지 않도록 하는 것이 모델 학습능력을 상승시키는 거라 생각하는데, 잘못 이해하고 있는건지 답변 부탁드리겠습니다!
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 안녕하세요! 질문입니다.
너무 많은 질문을 드려서 죄송합니다.공부를 하다 보니 이미지 전처리를 하고, 모델을 만들고 만든 모델로 배치사이즈를 정해서 학습시키고 평가하는 것 까지 과정은 이해가 갔는데.. 앞으로 가면서도 약간 헷갈리는 것이각각의 레이블들을 원핫 인코딩으로 만들고 그것과의 차이를 토대로 loss 와 accuracy를 구하는 걸로 아는데, 그럼 학습 과정에서 만약 강아지(0, 0, 1, 0, 0, 0, 0)라는 테스트 레이블이 있다면 이미지가 모델을 거쳐 마지막 소프트맥스 까지 거친 값(가령 0.233, 0.2302, 0.12, ---)과 저 레이블 값과의 loss와 accuracy를 구하는 건가요?
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 질문입니다!
ReduceLRonplateau & Early stopping (patient = 3) 기준에 부합하지 않는 데이터가 연속적으로 나와야 종료하나요?(ex. x x x 실행 )아니면 3번 카운팅 되면 실행되는 건가요?(ex. x o o x o x 실행)
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 질문입니다.
지금까지 (28, 28, 1): 그레이스케일 이미지 였다면input_tensor = Input(shape=(28, 28, 3): RGB이미지Conv2d(filters=32, kernersize=(3, 3), strides=1, padding='same', activation='relu')(input_tensor)라면 파라미터수는 (32*3*3):커널을 적용한 피처맵 (3)input데이터 채널수로 계산하는것이 맞나요? 최종: 32*3*3*3 피처맵의 개수는 채널수와 상관없이 같구요 (왜냐하면 필터의 채널수도 3으로 늘어나기 때문에)
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
Functional API 와 Sequential 은 말그대로 입력 방법의 차이인가요?
API 라고 해서 모듈을 불러오는데는 차이가 있는게 아니라 말 그대로 모듈과의 소통하는 방식의 차이를 뜻할뿐인지 그게 궁금합니다.물론 강의 마지막에 말씀하신 것 처럼 인풋을 알 수 있냐 없느냐의 차이도 포함해서요
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
선생님 안녕하세요! 질문입니다!
머신러닝 안에 딥러닝이 있다고 할 수 이유는 학습을 하고 원하고자 하는 결과를 얻기 위해 가중치를 업데이트 하는 알고리즘이 있기 때문이고, 딥러닝과 머신러닝의 차이는 딥러닝은 학습된 결과로 다시 한번 학습하는 것(layer를 쌓는 것)과 같이 복잡한 로직을 수행하는 점에 있어서 차이가 있는건가요?머신러닝과 딥러닝의 차이가 정리가 안되서 이렇게 질문을 남겨드립니다.
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
연쇄법칙의 가운데 세타2는 왜 포함이 되어 있지 않나요...?
안녕하세요 선생님!좋은 강의 잘 듣고 있습니다도중에 궁금한 부분이 생겨 질문드립니다!!!연쇄법칙 중 z(3)은 세타2*a(2)로 보여지는데왜 연쇄법칙의 분모에는 a(2)만 들어 가게 된걸까요...?알고 싶습니다...ㅠㅠ
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
Hybrid Processor가 Co processor 보다 좋은 이유
안녕하세요 맛비님. 좋은 강의 해주셔서 감사합니다. 다름이 아니라, AMD와 Xilinx가 2020년에 인수합병으로 CPU 안에 FPGA 요소를 포함시킨 새로운 Architecture인 Co-processor를 특허로 낸 반면에, 삼성의 엑시노스는 ARM의 CPU IP, AMD와 협업한 GPU, 자체 NPU등 각각의 IP를 한 Chip에 배치시킨 Co processor 가 아닌 Hybrid processor라고 볼 수 있을 것 같습니다. 여기서 의문은 왜 Co processor가 Hybrid processor 보다 좋은지 잘 모르겠습니다. 이에 대한 생각이 어떠신지 궁금합니다! 감사합니다.
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
안녕하세요 선생님 질문입니다!
강의 내용에서 이터레이션이 1000이고 전체 데이터수가 10만이라면 단순히 연산량으로 봤을 때 10만건의 데이터를 각각 1000번씩 돌려서 웨이트를 업데이트 한다라는 의미가 맞나요?
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
안녕하십니까 cnn_acc_ci.v 파일에서 궁금한 점이 있습니다.
안녕하십니까 cnn_acc_ci.v 파일에서 약 90번 째 줄에 ot_ci_acc에 각 kernel의 값을 더해주고 w_ot_ci_acc에 wire로 연결하고 r_ot_ci_acc로 전달합니다. 여기서 w_ot_ci_acc를 통해서 r_ot_ci_acc로 전달하는 이유가 궁금합니다. =================현업자인지라 업무때문에 답변이 늦을 수 있습니다. (길어도 만 3일 안에는 꼭 답변드리려고 노력중입니다 ㅠㅠ)강의에서 다룬 내용들의 질문들을 부탁드립니다!! (설치과정, 강의내용을 듣고 이해가 안되었던 부분들, 강의의 오류 등등)이런 질문은 부담스러워요.. (답변거부해도 양해 부탁드려요)개인 과제, 강의에서 다루지 않은 내용들의 궁금증 해소, 영상과 다른 접근방법 후 디버깅 요청, 고민 상담 등..글쓰기 에티튜드를 지켜주세요 (저 포함, 다른 수강생 분들이 함께보는 공간입니다.)서로 예의를 지키며 존중하는 문화를 만들어가요.질문글을 보고 내용을 이해할 수 있도록 남겨주시면 답변에 큰 도움이 될 것 같아요. (상세히 작성하면 더 좋아요! )먼저 유사한 질문이 있었는지 검색해보세요.잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.==================
-
해결됨파이썬을 활용한 머신러닝 딥러닝 입문
numpy의 shape
안녕하세요 인프런에서 강사님의 강의(파이썬을 활용한 머신러닝 딥러닝 입문)를 수강 중인 손승운입니다.질문'파이썬을 활용한 머신러닝 딥러닝 입문' 강의 12강 내용 7분 18초를 보면 주피터 노트에서는 z.shape의 값이 (axis2, axis0, axis1) 순서로 나오고 제가 직접 주피터노트에 실습한 결과도 동일했습니다.하지만 7분 33초 중앙을 보면 shape를 (axis0, axis1, axis2)로 표현하셨는데, 이는 구글링을 통해 다른 사람들이 표현한 것과 같습니다.그럼 (axis2, axis0, axis1)와 (axis0, axis1, axis2) 둘 중 어느 것이 맞는 표현인가요? 혹시 원래는 (axis0, axis1, axis2)로 표현해야 하지만 numpy를 활용해 shape를 볼 때만 (axis2, axis0, axis1)로 표현되는 건가요?강사님의 강의 덕에 머신러닝 개발자가 되는데 한걸음 내딛을 수 있었습니다. 감사합니다. 편하신 시간에 답변주시면 감사하겠습니다.
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
CNN Core 모듈 질문
안녕하세요 맛비님 항상 좋은 강의 잘 듣고 있습니다.질문 두 가지만 드리겠습니다!CNN 연산 모듈의 latency가 4 cycle인데, throughput은 몇인가요? 수업에서 했던 시뮬레이션은 입력 데이터를 여러 번 넣는 과정이 아닌 한 번만 넣고 하나의 결과가 나온 시뮬레이션이지만, 사실 이 모듈은 파이프라인 구조로 되어있는 모듈이기 때문에, 입력데이터를 여러 번 넣는 과정을 진행한다면 throughtput은 1이라고 봐도 무방한가요?기존 CNN 연산 모듈 말고, Winograd convolution 연산을 구현한 모듈로 얼마만큼의 resources(LUT, slices)들이 줄었는지 발전시켜보혀고 하는데 맛비님 생각이 궁금합니다! =================강의에서 다룬 내용들의 질문들을 부탁드립니다!! (설치과정, 강의내용을 듣고 이해가 안되었던 부분들, 강의의 오류 등등)이런 질문은 부담스러워요.. (답변거부해도 양해 부탁드려요)개인 과제, 강의에서 다루지 않은 내용들의 궁금증 해소, 영상과 다른 접근방법 후 디버깅 요청, 고민 상담 등..글쓰기 에티튜드를 지켜주세요 (저 포함, 다른 수강생 분들이 함께보는 공간입니다.)서로 예의를 지키며 존중하는 문화를 만들어가요.질문글을 보고 내용을 이해할 수 있도록 남겨주시면 답변에 큰 도움이 될 것 같아요. (상세히 작성하면 더 좋아요! )먼저 유사한 질문이 있었는지 검색해보세요.잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.==================
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
다변량 회귀
안녕하세요,다름이 아니라 현업에서 회귀 문제를 다루고 있는데 궁금한점이 있어 질문드립니다. 50개 이상의 피처를 통해 종속변수를 예측하는 업무를 진행하고 있는데 논리/이론적으로 일치하는지 대해 여쭤보고 싶습니다. 50개 이상의 변수에 트리기반의 알고리즘 적용하여 주요 인자 를 몇개 뽑습니다.주요 인자에 대하여 다변량 회귀를 진행하게 된다면, 종속변수를 예측할 수 있는 회귀 방정식을 도출할수 있을까요?
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
용어 정리
안녕하세요 맛비님.이번 강의를 들으면서 수업 관련 개념을 명확하게 하고자 용어 정리를 하고자 합니다!지금까지 해온 것들을 보면,CNN 연산 모듈을 설계했냐? -> 그렇다. input feature map을 input으로 넣어 output feature map을 도출했냐? -> 아니다. kernel의 size만큼 input feature map에서 window 해서 kernel size의 channel input만큼 해당하는 부분을 Convolution 연산하였다. 최종적으로는 output feature map 1포인트의 channel output만큼 해당하는 값을 구했다. 라고 할 수 있을까요? 처음 듣는 사람이 window라는 말을 잘 이해하지 못한다면 어떻게 쉽게 말할 수 있을까요?
-
미해결차량 번호판 인식 프로젝트와 TensorFlow로 배우는 딥러닝 영상인식 올인원
실습시 파워셀 오류 관련 질문드립니다
안녕하세요, 1강 수업 듣다가 도저히 해결이 안되는 문제가 있어서 질문 드립니다.실습할 때(1강 영상들 보는 중) 파이썬 파일을 파워쉘에서 1s을 쓰신 다음에 해당 폴더에 있는 py파일들 이름을 다 쓰신 다음에 python3 (실행할파일명.py) 이렇게 입력하시던데 어떻게 하는 건가요? 1s을 쳐도 그냥 오류가 뜨고 앞에꺼 안하고 그냥 python3 (실행파일명.py) 치면 아무일도 안 일어나네요ㅠㅠ답변 주신다면 정말 감사드리겠습니다.. 여기서 시간을 너무 많이 잡아먹어서ㅠ-ㅠ
-
미해결차량 번호판 인식 프로젝트와 TensorFlow로 배우는 딥러닝 영상인식 올인원
CRNN 모델 코드 오류 발생
안녕하세요, CRNN 모델을 Custom Dataset으로 Training 하려고 하는 도중에 위와 같은 에러가 발생하는데 해결 방법에 대해 문의를 드립니다.
-
미해결[Pytorch] 파이토치를 활용한 딥러닝 모델 구축
nn.CrossEntropyLoss() method 질문
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.좋은 강의 항상 감사드립니다.nn.CrossEntropyLoss() 는 nn.LogSoftmax 와 nn.NLLLoss 연산의 조합이라고 말씀해 주셨고, cross-entropy는 아래와 같은 식인 것으로 알고 있습니다.위 식에서 log는 한번만 취해지는 것으로 보입니다. 그런데 CrossEntropyLoss가 LogSoftmax 와 NLLLoss 연산의 조합이라면 Log 함수가 두번 사용 되는 것 같아서 이해가 잘 되지 않습니다.설명을 해주시면 감사드리겠습니다 :-)