묻고 답해요
156만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
데이터 엔지니어의 역량을 기르려면 어떻게 해야할까요?
안녕하세요 강사님 ㅎㅎ사실 인공지능 쪽 열심히 공부하려고 강사님의 강의 거의 전부를 구매해서 듣고 있는 학생입니다. 요새 고민이 있어서 질문을 드립니다.. ㅎㅎ 저는 요새 최신논문 모델 구현 같은 경우 턱턱 막히는 부분도 많아서.. 그부분에서 실력의 한계를 많이 느끼는데요..실력을 기르기 위해서 그저 막연하게 캐글 competition expert가 되면 되지 않을까? 생각해서 일단 달성해보자 생각하면서 캐글팁이나 노하우 이런거 공부하고 EDA 스크립트나 common.py 같은 걸 만들며 최근 도전하는 중입니다. 혹시 강사님은 데이터엔지니어의 역량을 기르기 위한 로드맵이나 루틴이 있으신지, 만약 있으시다면 어떤 것들이 있는지 살짝 공유가능하실까요? 감사합니다.
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
Fine-Tuning 한 Model 을 다시 Fine-tuning 할 수 있나요?
학습 중에 궁금한 점이 생겨 질문 드립니다.fine-tuning 한 이후에 추가로 학습 시키고 싶은 dataset이 생겼을 경우,이전 학습된 peft model 을 이어서 fine tuning 을 진행 할 수 있을까요?
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
실제 캐글(Kaggle) 문제 풀고, 제출해보며, 성능 개선 기법 익히기2 강의에서 질문입니다
실제 캐글(Kaggle) 문제 풀고, 제출해보며, 성능 개선 기법 익히기2 강의 17:30 부분에서 질문이 있습니다. 이번 강의에서는 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])와 같이 이미지 데이터에 Normalization을 적용하였는데요, from transformers import ViTFeatureExtractor feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch32-224-in21k') feature_extractor다음 코드와 같이 vit-base-patch32-224-in21k 모델에서 적용된 image_mean과 image_std를 확인해 보니,"image_mean": [ 0.5, 0.5, 0.5 ], "image_std": [ 0.5, 0.5, 0.5 ] 와 같이 결과가 나왔습니다. 그렇다면, 학습 데이터에 Normalization을 적용할 때에도 [ 0.5, 0.5, 0.5 ], [ 0.5, 0.5, 0.5 ] 값을 적용해야 하는 것이 아닌지 여쭙고 싶습니다. 감사합니다!
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
학습 중 궁금한 부분 문의합니다
안녕하세요 라마2에 한국어 데이터셋만 학습해도 한국어 질문 답을 하는 것을 보고 궁금해서요 한국어 데이터 셋만 학습을 해도 라마2에서 한국어를 이해하고 대답하는 건지요 그리고 예제에서 질문을 한 후 받는 대답이 너무 짧게 나오는데요 이부분은 데이터셋의 답 부분이 짧아서 그런 가요 gpt는 엄청 길게 답을 하는데 이부분이 궁금하네요
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
강의 노트가 없습니다.
강의 수강하고 있는데 동영상 강의만 있고강의 노트를 받는 곳이 없습니다.
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
RNN과 LSTM 구현해보기2(MNIST 데이터셋) 강의에서 질문입니다
RNN과 LSTM 구현해보기2(MNIST 데이터셋) 강의의 15:04 부분에서 질문입니다. 강의에서는 다음과 같이 학습 과정에서 반복문을 작성했습니다. # |x_minibatch| = (128, 1, 28, 28) # |y_minibatch| = (128) for x_minibatch, y_minibatch in train_batches: x_minibatch = x_minibatch.reshape(-1, sequence_length, feature_size) y_minibatch_pred = model(x_minibatch) loss = loss_func(y_minibatch_pred, y_minibatch) optimizer.zero_grad() loss.backward() optimizer.step() train_losses.append(loss.item()) 이때, 아래와 같이 loss_func를 적용하는 부분에서 궁금한 점이 있는데요,loss = loss_func(y_minibatch_pred, y_minibatch)y_minibatch_pred 는 model에 x_minibatch 를 넣어서 값을 예측한 것으로, 그 shape이 (128, 10) 과 같이 2차원으로 나온다고 이해하였습니다.반면, y_miinibatch 는 (128) 과 같이 1차원으로 나오는 것을 확인했습니다. 이렇게 loss_func 안에 넣는 두 텐서의 다른 것으로 보이는데, y_minibatch의 shape을 변형해 줘야 하는 것은 아닌지 여쭙고 싶습니다..!
-
해결됨모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
패키지 버전 궁금합니다
안녕하세요!혹시 본 강의에서 사용하신 모든 라이브러리 버전을 알 수 있는 방법이 있을까요?개인적으로 도커를 통해서 학습을 진행중인데, 버전에 따라 발생하는 에러가 있는거 같아서 문의드립니다. 감사합니다.
-
해결됨모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
[질문] Llama2 Autotrain 작동 시
ERROR train has failed due to an exception: TypeError: LlamaForCausalLM.__init__() got an unexpected keyword argument 'use_flash_attention_2'안녕하세요, Autotrain library를 활용하여 fine-tuning 중 아래와 같은 에러가 발생하였는데요. 혹시 어떻게 해결할 수 있을지 궁금합니다. 제 환경에 필요한 정보가 필요하시다면 언제든지 말씀드리겠습니다.감사드립니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
역전파 내용 중 미분 관련 질문 드립니다
안녕하세요, 섹션2의 역전파 수업을 듣다가 궁금한 점이 생겨서 질문 드립니다. 5분 30초에서 L을 zi에 대해서 미분하면 n분의 1이 된다고 하셨는데 그 이유가 i번째 엘리멘트만 고려해서 미분이 되기 때문인가요? 즉, 1/n*zi라서 미분값이 1/n인건지 궁금합니다!
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
강의 자료는 어디서 다운받나요?
강의 자료는 어디서 다운받나요?
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
강의자료 다운로드 가능한가요?
강의자료나 실습코드를 찾을 수가 없는데요. 자료 제공이 원래 안 되는지 궁금합니다.
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
데이터로 딥러닝 적용해보기(당뇨병 환자 데이터) 강의에서 질문입니다
데이터로 딥러닝 적용해보기(당뇨병 환자 데이터) 강의에서 질문입니다.해당 강의 11:00 부분에서 입출력 차원의 수를 각각 9와 1로 정해주었습니다.이때, 모델에서의 계산 과정을 아래와 같이 이해하였습니다.우선, 전체 학습 데이터는 (442, 9) 형태이고, 가중치는 (9, 1) 형태이므로(442, 9) x (9, 1) -> (442, 1) 형태가 되고 여기에 (1) 의 형태를 가진 편향을 더해주면서 브로드캐스팅을 거쳐(442, 1) + (1) -> (442, 1) 형태가 되는 것으로 이해하였습니다. 제가 생각한 계산 과정이 맞는지 궁금합니다!감사합니다.
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
예측하려는 y값이 여러 개일 경우에는 어떻게 하나요?
선생님 안녕하세요.강의 잘 듣고 있습니다.여기에선 y값이 'Global~' 하나 인데현업에서는 y값이 여러 개일 경우가 많은데, 그럴 때는 y_raw_data 컬럼을 어떻게 설정해주나요?
-
미해결
코랩에서 파이토치 모델 재학습 시
코랩에서 파이토치로 신경망 모델 구현했을 때 학습을 마치고 파라미터 수정 시 다시 학습을 진행한다면 런타임 다시 시작 후 처음부터 코드 전체를 다시 돌려야하나요?
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
섹션2 코드질문
# 동일 shape 은 당연히 Tensor 간 연산 가능data1 = torch.torch.FloatTensor([ [1], [2], [3] ])data2 = torch.FloatTensor([1, 1, 1])data3 = data1 + data2 print (data1.shape, data2.shape, data3.shape)print (data3) 이 코드에서 data1은 torch.FloatTensor이 아닌torch.torch.FloatTensor를 사용하는 이유가 궁금합니다.출력했을때는 같은결과가 나오는데 말이죠..
-
해결됨[Pytorch] 파이토치를 활용한 딥러닝 모델 구축
the kernel appears to have died. it will restart automatically.
섹션1의 마지막 강좌에서 저도 주피터 노트북에 똑같이 작성해보면서 공부하고있었는데요.the kernel appears to have died. it will restart automatically. 이런 문구가 뜨면서 이미지화가 안되면 어떻게 처리해야하나요? 구글링을 해보고 ~config에 들어가서 수정도 해봤는데 잘 안됩니다..
-
해결됨최신 딥러닝 기술 Vision Transformer 개념부터 Pytorch 구현까지
Multi-Head Attention 모델 구조에서 궁금한게 있습니다.
안녕하세요. 코드 공부하면서 궁금한 점이 생겨 질문남깁니다.앞선 이론 강의에서 이해한 바로는 MSA과정에서 Attention*value를 통해 [배치수, 헤드수, 패치수+1, Dh] 차원의 결과들이 나오고 Linear Projection을 통해 [배치수, 패치수+1, D] 차원의 결과가 얻어지는 것으로 이해했습니다.attention = torch.softmax(q @ k / self.scale, dim=-1) x = self.dropout(attention) @ v x = x.permute(0,2,1,3).reshape(batch_size, -1, self.latent_vec_dim)위와 같이 제공해주신 코드에는 이를 위한 Linear 과정이 따로 없는 것 같고 Attention*value 결과에 permute와 reshape를 해주었는데, 해당 과정이 이론에서 설명해주신 Linear 과정과 동일한 효과를 지니는 것일까요??
-
해결됨최신 딥러닝 기술 Vision Transformer 개념부터 Pytorch 구현까지
전처리 관련해서 질문이 있습니다
안녕하세요 강사님. 항상 좋은 강의 감사드립니다.데이터 전처리에 대해서 2가지 궁금점이 있어서 질문드립니다.RandomCrop 이나 Flip 같은 전처리는 데이터 증강을 위해서도 사용된다고 알고있는데 해당 전처리를 적용해주면 원본 데이터가 변경되는 것인지, 혹은 원본 데이터는 유지되고 전처리가 적용된 이미지가 추가되는 것인지 궁금합니다. 전자에 해당된다면 데이터 갯수의 증강을 목적으로 사용하기 위해선 원본 이미지데이터셋을 따로 저장해두고 전처리된 데이터셋과 합쳐줘야 될까요??RandomCrop에서 패딩을 넣어주는 이유가 정확하게 무엇인지 알고싶습니다.
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 [데이터과학 Part3] - 지금까지 익힌 이론과 미니배치까지 적용된 딥러닝 코드 구현해보기 에서 질
9분 20초쯤에 indices = torch.randperm(x.size(0)) print(indices) x_batch_list = torch.index_select(x, 0, index=indices) y_batch_list = torch.index_select(y, 0, index=indices) indices를 랜덤한 순서로 넣었다고 하셨는데그리고x_batch_list = torch.index_select(x, 0, index=indices) 이걸사용하는 이유가뭔가요?어차피 지금 랜덤하게 바뀐순서라면x_batch_list = x[indices] 이걸통해서 바로 넣어도 되는게 아닌가요? torch.index_select 이건 인덱스로 원하는 데이터만 선택적으로 추출하기에 적합하다고 알고있습니다. 이번에 굳이 x_batch_list = x[indices] 이게아닌 x_batch_list = torch.index_select(x, 0, index=indices) 이걸 사용한 이유를 알고 싶습니다.제가 아는것이 전부가 아닌 또다른게 있는가해서요
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 [데이터과학 Part3]에 파이토치(PyTorch) 텐서 연산 관련 수학과 구현 정리 (이론+실습) 파이토치(PyTorch) 텐서 연산 관련 수학 정리 강의 질
5분 50초쯤에data1 = torch.FloatTensor([1,2]) # 1,2 원소를 가진 1D 텐서 선언이걸 가르키면서 정확히 말하면 2차원 벡터라고 말씀하셨는데 그럼 data1 = torch.FloatTensor([1,2,3,4])print(data1)tensor([1., 2. ,3., 4.])이렇게 된다면 4차원이 되는건가요? 다른 블로그나 구글링을 해보면2. 벡터(1D Tensor)숫자들의 배열을 벡터라고 하며 1차원 텐서라고 한다.벡터의 축의 개수는 1개이다.vector = np.array([1, 2, 3, 4, 5]) print(vector) print(vector.ndim) print(vector.shape)[1 2 3 4 5] 1 (5,)이렇게 말하고 있습니다. 또 강사님의 02_tensor.md 파일을보면벡터(1D 텐서)벡터(1D 텐서): 숫자 여러 개가 특정 순서대로 모여 있는것을 의미함 (배열이라고 이해하면됨)하나의 벡터가 이루는 데이터의 갯수가 n개이면 n-차원 벡터라고함벡터는 열 벡터, 행 벡터 둘다 가리키지만, 열 벡터로 표현하는것이 일반적임이라고 하는데 갯수가 n개이면 n-차원 벡터 이말과 저위의 다른 누군가의 블로그(구글링)의 말에 혼동이 좀 생기는것 같습니다. 아마 강사님께서 차원의 대한 얘기가 혼동될 수 있다고 수차례 말씀하셨는데 이부분인가 싶기도합니다.아니면 제가 잘못 생각하고 있는부분이 있는지 알려주시면 감사하겠습니다