강의

멘토링

커뮤니티

AI Technology

/

Deep Learning & Machine Learning

[Python]数学なしで機械学習を簡単に理解して実装する

数学なしで高度な機械学習モデルを理解し、Pythonを介して簡単に実装する方法を学びます。

難易度 入門

受講期間 無制限

  • dlbro
Machine Learning(ML)
Machine Learning(ML)
Python
Python
Scikit-Learn
Scikit-Learn
Big Data
Big Data
Machine Learning(ML)
Machine Learning(ML)
Python
Python
Scikit-Learn
Scikit-Learn
Big Data
Big Data

学習した受講者のレビュー

学習した受講者のレビュー

4.7

5.0

creed211

100% 受講後に作成

モデリングの全般的な内容を学べる講義でした。超おすすめです

5.0

문정환

100% 受講後に作成

機械学習について詳しく学ぶことができました!

5.0

우형준

100% 受講後に作成

機械学習の理解にとても役立つ講義でした

受講後に得られること

  • 機械学習作業の全体的な流れ

  • 機械学習の基本から高級モデルを簡単に使用する方法

  • Pythonを使用した機械学習モデルの構築

初めてでも、数学よく分からなくてもOK!
Python MLモデルの構築を始めましょう。

基礎から実習までの機械学習101

  • 機械学習の全体的な内容を簡単に説明します。
  • Python、Scikit-Learnで機械学習モデルを簡単に実装し、実践を進めます。

競技大会、実務に適用できる機械学習必須知識!

数学をよく知らない方もOK!この講義は、機械学習が初めての方がデータ前処理から高度な機械学習技術まで、迅速かつ効率的に学習することに焦点を当てた講義です。

式ではなくデータ前処理技術、そして各機械学習モデルの概念と長所と短所に集中して講義を進め、実習を通じてすぐに適用してみるように内容が構成されています。また、この川のひとつで機械学習作業の流れを一度に理解できます。

競技大会や実務に適用できるように必須となる機械学習の知識を提供するために講義を作成しました。一緒に挑戦しましょう!


こんな方におすすめです💡

機械学習/データ分析作業を一度に理解したい方

機械学習/データ分析 必須知識を習得したい方

データ分析コンテストや実務に機械学習技術を適用したいのですが、基礎がない人

機械学習ワークフロー理解+実務のための基本知識まで!

  • ✅レッスンを使用すると、機械学習の全体的なワークフローと方法を理解できます。
  • ✅複雑なモデルも短いコードで実装できます。
  • ✅実務に適用できる基本的な知識を備えています。

学ぶべき機械学習ライブラリ、Scikit-Learn

  • 最も活用されているPythonベースの機械学習ライブラリの1つです。
  • データの前処理からモデル予測まで、全範囲の機能を提供します。
  • サイキランが提供していない最新の機械学習モデルも併用できます。

細かい段階的な説明、
鮮やかな実習で充実

💡講義を通じて機械学習について理解し、学んだ内容をもとに様々な実習を行います。ここに実務を通じて得た経験まで内容に込めました。

💡 NASA airfoil 騒音データ、信用評価データなどの実際のデータを扱い、アンサンブル/オートMLなどの高度な機械学習まで迅速かつ効率的に学習できます。

💡基礎から本番までしっかり! 110ページの膨大な学習資料+ Pythonの基本的な文法と機械学習の例を含む19の練習ファイルを提供します。授業中に知らない内容があれば質問を残してください。

嬉しいです、ディープラーニングモデルです!

現在、ディープラーニング/マシンラーニング関連YouTubeを運営するディープラーニングモデルです。データ分析と数学の専攻知識と実務経験をもとに、必ず勉強しなければならない内容を学びます。現在までに約3000人余りの受講生の方々がディープラーニング号型講義を選択していただきました。


Q&A 💬

Q. 非専攻者も聞くことができますか?

機械学習に入門したい方は誰でも受講できます!また、講義の目的に合わせて数学の内容はできるだけ少なく整理しました。

Q. プログラミングの知識が必要ですか?

Pythonの基本概念も講義で一緒に扱われるので必須ではありません。

Q. この講義をなぜ聞かなければなりませんか?

専攻知識と様々なプロジェクト経験に基づいて講義を構成し、機械学習作業の全体的な部分を含んでいます。これにより、機械学習作業の大きな写真を描くことができます。さらに、コードを効率的に書くことができます。

Q. 数学の知識が必要ですか?

関数の基本的な理解をしているだけです。機械学習モデル自体を開発したい、または最適化研究をしたい人は、この講義に加えてさらに数学を勉強する必要があります。

Q. どのプログラムを使用しますか?

すべての練習は、個別のインストールを必要としないGoogleコラボレーションで行われます。 Googleアカウント(無料)が必要で、コラボが使用できない場合は、練習に支障が生じる可能性があります。

こんな方に
おすすめです

学習対象は
誰でしょう?

  • 機械学習/データ分析に興味がある人

  • 機械学習/データ分析 必須知識を習得したい方

前提知識、
必要でしょうか?

  • 欲しい情熱

こんにちは
です。

5,126

受講生

404

受講レビュー

261

回答

4.7

講座評価

7

講座

こんにちは。

ディープラーニング/機械学習関連のYouTubeチャンネルを運営しているディープラーニング・ホヒョンです。

数学/データ分析を専攻し、多数のディープラーニングプロジェクトを完了、および遂行しています。

機械学習、高度な機械学習、ディープラーニング、最適化理論、強化学習などの人工知能 の内容と、線形代数学、微積分、確率統計、解析学、数値解析などの数学の内容まで、皆さんと共有できる知識を持っています。

皆さん、はじめまして!

* 関連経歴

現) SCI(E) 論文、国際学会発表多数

現)人工知能関連の大学諮問多数

前)K企業 主任研究員 - データ分析およびシミュレーション:新製品開発、性能向上、新技術適用

著書「ディープラーニングのためのPyTorch入門」(2022年世宗図書学術部門優秀図書に選定)

カリキュラム

全体

34件 ∙ (4時間 31分)

講座資料(こうぎしりょう):

授業資料
講座掲載日: 
最終更新日: 

受講レビュー

全体

45件

4.7

45件の受講レビュー

  • bskim9783님의 프로필 이미지
    bskim9783

    受講レビュー 8

    平均評価 5.0

    5

    32% 受講後に作成

    • creed2110960님의 프로필 이미지
      creed2110960

      受講レビュー 1

      平均評価 5.0

      5

      100% 受講後に作成

      モデリングの全般的な内容を学べる講義でした。超おすすめです

      • dlbro
        知識共有者

        受講レビューありがとうございます!!

    • cgkwon님의 프로필 이미지
      cgkwon

      受講レビュー 12

      平均評価 4.0

      4

      100% 受講後に作成

      • mjh137got님의 프로필 이미지
        mjh137got

        受講レビュー 1

        平均評価 5.0

        5

        100% 受講後に作成

        機械学習について詳しく学ぶことができました!

        • dlbro
          知識共有者

          受講レビュー本当にありがとうございます!!頑張ってください!

      • dohyeon02251693님의 프로필 이미지
        dohyeon02251693

        受講レビュー 1

        平均評価 5.0

        5

        100% 受講後に作成

        ¥8,193

        dlbroの他の講座

        知識共有者の他の講座を見てみましょう!

        似ている講座

        同じ分野の他の講座を見てみましょう!