この講義は、ディープラーニングを活用した画像と物体認識の原理を基礎から最新モデルまで段階的に学ぶ過程です。 - 基礎固め:PyTorchでテンソルとニューラルネットワークの基本構造理解 - 画像理解:コンピュータビジョンの概念、画像データ構造、Augmentation技法学習 - CNNモデル学習:畳み込みニューラルネットワーク(CNN)で画像分類実習(CIFAR-10など) - Transfer Learning:既存の学習済みモデルを活用して少ないデータで高速学習 - Object Detection:R-CNN、YOLO、SSD、DETRなど最新物体検出モデル理解及び実習 - Segmentation:U-Net、Mask R-CNNによるピクセル単位物体分割体験