강의

멘토링

커뮤니티

BEST
AI Development

/

Computer Vision

All-in-one deep learning image recognition with vehicle license plate recognition project and TensorFlow

This is an all-in-one lecture where you can learn the entire process from the basics of deep learning/TensorFlow/computer vision to practical applications through a practical vehicle license plate recognition project. Through various practical exercises, you can develop practical skills to apply the latest deep learning models to custom datasets.

(4.8) 72 reviews

668 learners

  • AISchool
Tensorflow
Deep Learning(DL)
Machine Learning(ML)
CNN
NLP

Reviews from Early Learners

What you will learn!

  • How to proceed with a deep learning practical project rather than a basic example such as MNIST, CIFAR-10

  • How to apply the latest deep learning models to your custom dataset

  • Step-by-step learning from basic concepts of deep learning/machine learning to practical applications

  • Deep understanding of deep learning model architectures proposed in recent papers (EfficientNet, CenterNet, EAST, ...)

  • Principles and usage of the latest deep learning models used in various computer vision problem areas such as Object Detection, Text Detection, OCR, Image Captioning, and Generative Models.

  • How to improve the performance of deep learning models

Through various practical projects and learning from the latest papers
Become a Deep Learning/Computer Vision Expert . 😀

Please check before taking the class!

  • This lecture is based on the existing , Some classes overlap with the lectures. Please check the curriculum before taking the class.
List of relevant curriculum

Section 1

  • Introduction to Object Detection Problem Domain
  • Object Detection Metrics - IoU, mAP
  • Object Detection Datasets – Pascal VOC, MS COCO, KITTI, Open Images

Section 3

  • Introduction to TensorFlow Object Detection API

Section 4

  • R-CNN(Regions with CNN)
  • Fast R-CNN
  • Faster R-CNN
  • Non-Maximum Suppression (NMS)
  • SSD(Single Shot MultiBox Detector)
  • RetinaNet
  • CenterNet

Section 5

  • Object Detection using Pre-Trained Model

< Introduction to Deep Learning with TensorFlow 2.0 > Section 1

  • Artificial Intelligence, Machine Learning, Deep Learning & Supervised Learning, Unsupervised Learning, Reinforcement Learning
  • Deep Learning, TensorFlow Applications
  • A brief history of deep learning

< Introduction to Deep Learning with TensorFlow 2.0 > Section 3

  • Basic process of machine learning - defining hypothesis, defining loss function, defining optimization
  • Implementing a Linear Regression Algorithm Using TensorFlow 2.0
  • Batch Gradient Descent, Stochastic Gradient Descent, Mini-Batch Gradient Descent
  • Training Data, Validation Data, Test Data & Overfitting
  • Softmax Regression & Cross-Entropy Loss Function & One-hot Encoding & MNIST
  • TensorFlow 2.0 Keras Subclassing
  • Implementing MNIST Digit Classifier Using TensorFlow 2.0 and Softmax Regression

< Introduction to Deep Learning with TensorFlow 2.0 > Section 4

  • Multilayer Perceptron MLP
  • Implementing MNIST Digit Classifier Using TensorFlow 2.0 and ANN

< Introduction to Deep Learning with TensorFlow 2.0 > Section 5

  • Concept of AutoEncoder
  • Reconstructing MNIST data using TensorFlow 2.0 and autoencoders

< Introduction to Deep Learning with TensorFlow 2.0 > Section 6

  • The Difficulty of Computer Vision Problems and the Advent of the CNN-Based Computer Vision Era
  • Core concepts of convolutional neural networks - Convolution, Pooling
  • CNN implementation for MNIST digit classification using TensorFlow 2.0
  • Dropout
  • CNN implementation for CIFAR-10 image classification using TensorFlow 2.0

< Introduction to Deep Learning with TensorFlow 2.0 > Section 7

  • Recurrent Neural Network (RNN)
  • Vanishing Gradient Problem & LSTM & GRU
  • Concept of Embedding & Char-RNN
  • Char-RNN implementation using TensorFlow 2.0

< Introduction to Deep Learning with TensorFlow 2.0 > Section 8

  • Saving and loading parameters using tf.train.CheckpointManager API
  • Visualizing the learning process using TensorBoard

< Introduction to Deep Learning with TensorFlow 2.0 > Section 9

  • Introduction to various computer vision problem areas
  • Introduction to various natural language processing (NLP) problem areas

Learn how to use the latest deep learning models actually used by Naver (CRAFT) and Kakao (EAST).

All-in-One course to become a Deep Learning Computer Vision expert!

  • We've compiled everything you need to learn to become a deep learning computer vision expert into one course.
  • Essential theoretical knowledge for understanding the latest deep learning models : Learn the essential theories and knowledge required step by step, starting from the basics of machine learning and deep learning (ANN, CNN) to the principles of the latest deep learning models (EfficientNet, CenterNet).
  • Code Implementation Skills Using Python/TensorFlow 2.0 : Learn step-by-step implementation skills for actual projects using Python and TensorFlow 2.0.
  • Various practical projects for applying Custom Datasets : Rather than basic examples like MNIST, we will proceed with various practical projects for applying the latest deep learning models to various Custom Datasets .

Recommended for
these people

Who is this course right for?

  • Anyone who wants to seriously study deep learning/computer vision

  • Anyone who wants to work on a practical project using deep learning/computer vision

Need to know before starting?

  • Basic Python knowledge

Hello
This is

9,151

Learners

675

Reviews

351

Answers

4.6

Rating

30

Courses

Curriculum

All

126 lectures ∙ (20hr 51min)

Course Materials:

Lecture resources
Published: 
Last updated: 

Reviews

All

72 reviews

4.8

72 reviews

  • 김한주님의 프로필 이미지
    김한주

    Reviews 6

    Average Rating 5.0

    5

    30% enrolled

    다른 강의와 다르게 기본 개념, Toy 프로젝트에서 그치는 것이 아니라 산업에서 사용되는 수준을 다루고 있어서 좋았습니다.

    • AISchool
      Instructor

      안녕하세요. 귀중한 시간을 할애해서 수강해주셔서 감사합니다~!. 상세한 수강평도 감사합니다~. 더 만족스러운 강의를 제작할 수 있도록 노력하겠습니다. 좋은 하루되세요!

  • 김준표님의 프로필 이미지
    김준표

    Reviews 5

    Average Rating 5.0

    5

    73% enrolled

    TensorFlow2.0으로 배우는 딥러닝 입문 강의 완강하고 저랑 잘 맞아서 이 강의도 듣게 됐습니다. 아직 전반부 듣고 있긴 하지만 설명도 잘해주시고 프로젝트도 남길 수 있어서 진학 및 취업 준비에 굉장히 도움 많이 될 것 같아요.

    • AISchool
      Instructor

      안녕하세요. 귀중한 시간을 할애해서 수강해주셔서 감사합니다~!. 더 만족스러운 강의를 제작할 수 있도록 노력하겠습니다. 좋은 하루되세요!

  • kream님의 프로필 이미지
    kream

    Reviews 1

    Average Rating 5.0

    5

    25% enrolled

    프로젝트 진행하면서 정말 많은 도움을 받은 강의였습니다. 기초적인 부분도 알려주시고, 코드도 어떻게 진행되는지 잘 알려주셔서 도움이 많이 되었습니다.

    • AISchool
      Instructor

      안녕하세요. 귀중한 시간을 할애해서 수강해주셔서 감사합니다~!. 더 만족스러운 강의를 제작할 수 있도록 노력하겠습니다. 좋은 하루되세요!

  • dreamer님의 프로필 이미지
    dreamer

    Reviews 1

    Average Rating 5.0

    5

    100% enrolled

    유익한 좋은 강의 감사드립니다.

    • AISchool
      Instructor

      안녕하세요. 귀중한 시간을 할애해서 수강해주셔서 감사합니다~!. 더 만족스러운 강의를 제작할 수 있도록 노력하겠습니다. 좋은 하루되세요!

  • slhyj95님의 프로필 이미지
    slhyj95

    Reviews 1

    Average Rating 5.0

    5

    67% enrolled

    대학원에서 Machine learning 전공 예정인데, 부족한 부분을 이해하고, 연습하는데 많은 도움이 되었습니다.

    • AISchool
      Instructor

      안녕하세요. 귀중한 시간을 할애해서 수강해주셔서 감사합니다~!. 더 만족스러운 강의를 제작할 수 있도록 노력하겠습니다. 좋은 하루되세요!

$110.00

AISchool's other courses

Check out other courses by the instructor!

Similar courses

Explore other courses in the same field!