Using Keras as the front-end and TensorFlow as the back-end, you will learn from the basic theory of deep learning programming to simple examples, and apply deep learning to real-world tasks. We have planned to help you do so. You can find examples of areas where deep learning is mainly applied , such as the creation of various prediction programs, the creation of recognition-identification programs, sentence similarity identification programs, and the creation of adversarial generative neural network programs, on the web or in books. It includes not only representative examples that can be applied in practice, but also basic examples and various theoretical explanations for each. It would be helpful to listen to the lecture while downloading and executing the examples linked to each chapter. Since each lecture is about 20 minutes long and each theoretical explanation is divided into lectures, I think you will understand all the theoretical parts if you listen to the lectures until the end. So, even if it is not fun, I ask that you complete the lectures.
Learning Objectives
You can try developing a deep learning program yourself.
Helpful people
For those who want to get started with deep learning but find it difficult because of the complicated terminology and theories
For those who still don't understand even after looking through books or other examples
For those who need to develop a deep learning-based program but have difficulty finding a starting point
For those who need to understand the theoretical background, but have some practical development
Those who have developed based on TensorFlow but are new to Keras
별 1개도 아까운 강좌
우선, 강의자가 딥러닝을 이해하고 강의 하는지에 대한 의구심을 가짐.
지식은 충분한데 전달력이 떨어지는 사람이 있고, 반대로 지식은 충분치 않지만 전달력이 좋아서 좋은 강의를 만드는 분들도 있다고 생각합니다. 그러나, 이 강의를 진행한 분은 전달력도 없었으며 관련 지식 또한 매우 낮아 보였습니다. 그렇다고 수업에 대한 준비성도 없었다고 생각됩니다.
1. relu 가 왜 쓰이고, back propagation에 대한 이해도 없음
2. 프로그래머로써, 남의 코드를 가져다 설명하면서, 저작권 표시에 대한 인식 없음
3. 예제를 설명하기 위해서, 문제가 어떤 것이며, 어떤것을 풀기 위함이라는 것이 없이, 그냥 코드를 읽음
4. 왜 제목을 케라스 강의라고 했는지가 의문
5. 누구나 알수 있는 부분에 대해서만 과도한 설명
6. 모델을 설명할 때는 wiki를 참고하고 Keras documentation을 참고하면서 궁금한 사람은 읽어 보라고 대충 넘김
7. 모든 이론 설명은 주먹구구
8. 기타 등등
그래도, "익스포텐셜" 과 "디아그노시스"로 큰 웃음을 주셨네요.