신경식의 딥러닝 - Gradient Descent
공대형아(신경식)
딥러닝의 가장 핵심적인 학습 알고리즘인 gradient descent를 집중적으로 학습하는 강의입니다.
초급
딥러닝, gradient-descent, 최적화이론
This lecture covers the principles of Backpropagation, the most important part of deep learning, from the basics to advanced levels.

Deep Learning Core Basics (Backpropagation)
Mathematics related to deep learning
Matrix Calculus for Deep Learning
Learning Principles of Neural Networks
Backpropagation, the core of deep learning!
Learn deeply from the principles.
View full screen (click)
Backpropagation, the engine that runs deep learning, is the part that needs to be learned most deeply in the basic deep learning course.
This lecture covers the principles of training neural networks through backpropagation more intensively than any other lecture .
To understand backpropagation, you need to understand the Jacobian matrix, but the Jacobian matrix used in mathematics is insufficient in expressing backpropagation in deep learning.
Therefore, in this lecture, we will explain backpropagation in deep learning by extending the Jacobian matrix covered in mathematics .
In this lecture, we will start from the basics of differentiation.
Through differentiation of multivariable functions
Deals with differentiation of vector functions
Learn the extended Jacobian to explain backpropagation in deep learning.
In this lecture, we will train a simple model using backpropagation, which we learned theoretically.
Observe the results of the learned model in an easy way and analyze the principles of learning.
Inflearn's course content is available under the Creative Commons Attribution-NonCommercial-NoDerivatives license.
Who is this course right for?
People who lack mathematical ability to study deep learning
Those who want to lay a solid foundation for deep learning
If you want to fully understand the principle of backpropagation
L4DL Curriculum Participants
Need to know before starting?
[L4DL Lecture] Operations of Deep Learning Networks
3,078
Learners
127
Reviews
82
Answers
5.0
Rating
14
Courses
[멋쟁이 사자처럼] 인공지능중고급과정
[국립기상과학원] 2022년, 2023년, 2025년 기상 AI 부스트캠프
[삼성전기] 신입SW과정 전문반
[국가과학기술인력개발원] R&D 수행 역량 강화 장기 멘토링
[국가과학기술인력개발원] R&D 전문과정 이러닝 컨텐츠 제작
[국가과학기술인력개발원] 박사후연구원 연구 데이터 시각화 과정
[원광대학교] 원광대학교 AI 집체교육 및 AI 장단기과정
[한국지능정보사회진흥원] SW여성인재 교육
[SK m&service] 데이터 기반 의사결정
[한국IT비즈니스진흥협회] ICT COG Academy
[서울시 교육청] 신기술분야 연수
[KT] KT AI 역량향상 과정
[K-ICT] 데이터 안심구역 분석캠프
[경기도경제과학진흥원] 처음으로 배우는 비전 AI
[경기도경제과학진흥원] 파이썬 데이터 분석 입문
[서울과학기술원] AI 활용 심화교육
[서울대학교] AI 활용 역량강화 교육
[HD한국조선해양] AIC AI 연구직 역량 평가 개발
[멀티캠퍼스] 원리부터 구현까지, 머신러닝 핵심 알고리즘 마스터
[패스트캠퍼스] 수학적으로 접근하는 딥러닝
[패스트캠퍼스] 한 번에 끝내는 머신러닝과 데이터분석 A-Z
[패스트캠퍼스] 바이트 디그리 Lv.2 Deep Learning Essentials
[패스트캠퍼스] 딥러닝인공지능 초격차
[패스트캠퍼스] 컴퓨터 공학 초격차 VER.2
All
68 lectures ∙ (16hr 1min)
Course Materials:
All
5 reviews
5.0
5 reviews
Reviews 8
∙
Average Rating 4.9
Reviews 3
∙
Average Rating 4.7
Reviews 6
∙
Average Rating 5.0
Reviews 16
∙
Average Rating 4.9
Check out other courses by the instructor!
Explore other courses in the same field!