[NLP 완전정복 II] Transformer 구조 해부: Attention 확장부터 전체 모델 조립, 학습까지
Sotaaz
₩64,900
초급 / Python, transformer, self-attention, PyTorch
4.5
(2)
이 강의는 Transformer를 단순히 “구현하는 법”이 아니라, 왜 이런 구조가 만들어졌는지, 각 모듈이 어떤 역할을 하는지, 그리고 전체 모델이 어떻게 작동하는지를 설계자의 관점에서 해부하는 과정입니다. Self-Attention과 Multi-Head Attention의 내부 계산 원리를 깊이 있게 분석하고, Positional Encoding, Feed-Forward Network, Encoder·Decoder 구조가 어떤 한계를 해결하기 위해 등장했는지를 수식·논문·구현 코드로 직접 확인합니다. Attention에서 출발해 Transformer 전체 구조를 직접 조립하고, 실제로 학습까지 수행하며 모델이 어떻게 동작하는지 체득합니다. 이 강의는 “Transformer를 완전히 이해하고 싶은 사람”을 위한 가장 구조적이고 실전적인 로드맵입니다.
초급
Python, transformer, self-attention









![[AI 실무] AI Research Engineer를 위한 논문 구현 시작하기 with PyTorch강의 썸네일](https://cdn.inflearn.com/public/courses/334289/cover/b8885796-1e67-4983-9432-bcda0daae927/334289.png?w=420)
![[PyTorch] 쉽고 빠르게 배우는 NLP강의 썸네일](https://cdn.inflearn.com/public/courses/325056/course_cover/b66025dd-43f5-4a96-8627-202b9ba9e038/pytorch-nlp-eng.png?w=420)

![[개정판] 딥러닝 컴퓨터 비전 완벽 가이드강의 썸네일](https://cdn.inflearn.com/public/courses/325035/cover/f4bbef4d-d9a9-4def-a3a5-738a9eed8245/325035-eng.jpg?w=420)
![[Electron #2] React + Electron 오프라인 얼굴인식 출입·출결 관리 시스템 (With DeepFace)강의 썸네일](https://cdn.inflearn.com/public/files/courses/339677/cover/ai/0/3f0aeb99-6e04-4d30-ba5b-841a2c0fea14.png?w=420)
