NEW
DDPM 부터 DDIM 까지, 구현하며 배우는 Diffusion 완전정복 I
이 강의는 확산모델(Diffusion Model)의 진화 과정을 논문과 코드로 완전 정복하는 실전 중심 마스터클래스입니다. DDPM(Denoising Diffusion Probabilistic Model)과 DDIM 등, 생성 AI의 핵심 모델들을 논문 원리부터 직접 구현하며 학습합니다. 각 모델의 등장 배경, 수식, 네트워크 구조(U-Net, VAE, Transformer), 학습 과정(Noise Schedule, Denoising Step), 그리고 성능 향상을 이끈 아이디어들을 단계별로 분석합니다.수강생은 모든 모델을 PyTorch 기반으로 직접 코딩하며, 논문을 이해하는 것에 그치지 않고 ‘재현하고 응용할 수 있는 실무 능력’을 얻게 됩니다. 또한, 모델 간의 차이와 발전 흐름을 비교하며, 어떻게 확장되는지를 명확히 이해하게 됩니다. 이 강의는 이론·코드·실습을 하나로, 연구자·개발자·창작자 모두에게 생성모델의 진화를 체계적으로 익힐 수 있는 여정을 제공합니다. 논문을 ‘읽는 것’을 넘어, 직접 구현하며 ‘이해하고 재창조’하는 경험을 지금 시작하세요.




