학부생 때 논문 2편 작성한 대학원생이 알려주는 인공지능 입문 공부법
에폭
인공지능을 공부하는 학부생들이 참고하실 수 있는 인공지능 입문 공부 방법을 소개합니다.
입문
인공지능(AI), 선형대수학, 확률과 통계
Through this lecture, you'll be able to learn about the AI graduate school admission process and preparation methods from start to finish! I'll also share some great tips to increase your chances of getting accepted!
Creating a CV
Writing a contact email
Interview preparation
Writing a Self-Introduction Essay
Atmosphere of the actual interview and how the interview proceeds
Interview preparation
Who is this course right for?
For those who don't have seniors to help with their AI graduate school application
For those who don't want to rely solely on internet information to prepare for AI graduate school.
For those who want to hear and learn from detailed experiences of successful AI graduate school admissions.
For those who want to obtain a lot of information about graduate school admissions for artificial intelligence
Need to know before starting?
No prior knowledge is needed.
410
Learners
21
Reviews
2
Answers
4.7
Rating
2
Courses
안녕하세요.
강의하는 대학원생 에폭입니다.
인공지능/대학원과 관련한 주제로 여러분과 소통하고 있습니다.
__________
Position
인공지능 대학원 석사과정
Paper
계층적 강화학습에서의 표준적 계층 추가 방안: Timely Hierarchical Elaborated FeUdal Networks
HierarchyDrop: Dynamic Hierarchical Reinforcement Learning for Long- and Short -Term Subgoals
Others
인공지능 동아리 운영(2022~2023)
다수의 인공지능 관련 멘토링 및 과외 수행(머신러닝, 딥러닝, 대학원 준비 등)
다수의 스터디 운영(딥러닝, 자연어처리, 데이터베이스, 컴퓨터비전, 강화학습 등)
All
12 lectures ∙ (1hr 52min)
Course Materials:
All
4 reviews
4.3
4 reviews
$29.70
Check out other courses by the instructor!
Explore other courses in the same field!