이런 걸
배워요!
자연어처리의 기본개념
Attention에 대한 개념과 응용
최근 NLP에 대한 트렌드
딥러닝을 통한 자연어 처리 기법
인프런에서 강의한 내용을 정리하여 '파이썬 딥러닝 파이토치' 라는 책으로 출간하였습니다.
많은 관심 부탁드립니다 : )
(2020.10.06 기준 인프런 강의 업데이트 되었습니다. 지속적인 강의 업데이트 하도록 하겠습니다)
http://m.yes24.com/Goods/Detail/93376077?ozsrank=10
http://mbook.interpark.com/shop/product/detail?prdNo=339742291&is1=book&is2=product
[PyTorch] 쉽고 빠르게 배우는 딥러닝 강의를 통해, 딥러닝의 기본에 대해 배웠습니다.
이전 강의에 대해서, 비교적 적은 분량의 자연어 처리에 필요한 기본 지식을 배우며, 딥러닝 기술을 활용하여 자연어 데이터를 분석할 수 있는 기술을 배울 수 있는 강의입니다.
자연어 처리에 관심이 있으신 분은 Transformer, BERT 모델들을 들어보셨을 겁니다.
하지만, Transformer, BERT 모델들의 작동 원리에 대해서는 쉽게 이해하시지 못하셨을 거라 예상합니다.
그 이유는 자연어 처리에 대한 기본 지식이 부족하기 때문입니다.
따라서, 이번 강의에서는 자연어처리에 대한 기본 지식을 쌓을 수 있는 내용들을 학습해 봅니다.
자연어를 표현할 때 범주형 변수로 표현하였던 기존 방법론에 대해서 한계점을 제시하고,
이를 극복할 수 있는 자연어 표현 방법론에 대해 설명합니다.
방법론에 대한 핵심적인 내용을 위주로 다루며, 실제로 어떻게 이용할 수 있는지 실습을 진행하며 설명합니다.
자연어의 특징을 잘 반영할 수 있는 Recurrent Neural Network (RNN ; 순환 신경망) 딥러닝 모델에 대해서 배웁니다.
RNN 모델의 Feeding 과정을 수식적으로 배우며, 이에 대해 발전된 Long Term Short Memory (LSTM), Gated Recurrent Unit (GRU) 모델 역시 수식적으로 Feeding 과정을 설명합니다.
자연어 처리 분야에서는 많은 Task가 존재합니다.
그 중 가장 대표적으로 뽑히는 Tagging, Neural Machine Translation가 어떤 Task인지를 배웁니다.
각 Task 별 구체적인 예시와 더불어 분석 방법에 대한 대표적인 딥러닝 모델 구조를 제시하며,
데이터의 Weight Feeding 과정을 설명합니다.
RNN 모델의 한계점을 제시하고, 이를 개선하기 위한 방법론 중
자연어 처리 분야에서 최근 떠오르고 있는 메커니즘인 Attention 기법을 소개합니다.
Attention Mechanism을 이용한 Neural Machine Translation과,
Attention Mechanism을 활용한 Tagging 각각에 대해 어떠한 방식으로 적용할 수 있는지 설명합니다.
지식공유자의 입장에서, 최근 자연어 처리 분야에 대해서 주요하게 연구되고 있는 분야를 소개합니다.
본 강의를 수강한 이후, 자연어 처리에 대해서 어떠한 방식으로 공부하면 좋을지 방향성을 제안합니다.
Q. 본 강의에서 Transformer, BERT 모델들에 대해서 설명해주시나요?
→ 본 강의는 자연어처리에 대한 기초 강의입니다. Transformer, BERT 모델들에 대해서 공부할 때 필요한 기본 지식들을 준비할 수 있는 것이 본 강의의 목표입니다. 따라서, Transformer, BERT 모델들에 대해 간략히 소개를 드리지만, 구체적인 내용을 다루진 않습니다.
Q. 강의를 수강하기 전, 필요한 지식은 어느정도 인가요?
→ [PyTorch] 쉽고 빠르게 배우는 딥러닝 수업을 듣는 것을 추천합니다. 그 외에도, 딥러닝 알고리즘에 대한 기본 지식을 갖고 있으시면, 충분히 수강하실 수 있습니다.
Q. 실습 수업은 어떻게 진행되나요?
→ 이론 내용에 관련된 실습 코드를 준비해서 강의합니다. 코드를 공유하되, 라인 바이 라인으로 코드를 작성하며 복습해보시는 것을 추천합니다. (실습 코드 : [https://github.com/Justin-A/](https://github.com/Justin-A/torch_nlp_basic)torch_nlp_basic)
Justin
학습 대상은
누구일까요?
자연어처리 딥러닝으로 다루고 싶으신 분
텍스트, NLP 쪽을 배우고 싶으신 분
선수 지식,
필요할까요?
딥러닝 기초
Pytorch 기초
학부에서는 통계학을 전공하고 산업공학(인공지능) 박사를 받고 여전히 공부중인 백수입니다.
수상
ㆍ 제6회 빅콘테스트 게임유저이탈 알고리즘 개발 / 엔씨소프트상(2018)
ㆍ 제5회 빅콘테스트 대출 연체자 예측 알고리즘개발 / 한국정보통신진흥협회장상(2017)
ㆍ 2016 날씨 빅데이터 콘테스트/ 기상산업 진흥원장상(2016)
ㆍ 제4회 빅콘테스트 보험사기 예측 알고리즘 개발 / 본선진출(2016)
ㆍ 제3회 빅콘테스트 야구 경기 예측 알고리즘 개발 / 미래창조과학부 장관상(2015)
* blog : https://bluediary8.tistory.com
주로 연구하는 분야는 데이터 사이언스, 강화학습, 딥러닝 입니다.
크롤링과 텍스트마이닝은 현재는 취미로 하고있습니다 :)
크롤링을 이용해서 인기있는 커뮤니티 글만 수집해서 보여주는 마롱이라는 앱을 개발하였고
전국의 맛집리스트와 블로그를 수집해서 맛집 추천 앱도 만들었었죠 :) (시원하게 말아먹..)
지금은 인공지능을 연구하는 박사과정생입니다.
전체
15개 ∙ (5시간 44분)
가 제공되는 강의입니다.