이 강의는 딥러닝의 기초부터 고급 주제에 이르기까지 폭넓게 다루며, PyTorch를 사용한 실습 위주의 접근 방식을 채택하여 좋았습니다. PyTorch 환경 설정, 딥러닝의 기본 개념, 손실 함수, 경사 하강법, 활성 함수, 최적화, 정규화, 학습 속도 스케쥴러, 초기화, 표준화, CNN(Convolutional Neural Network), RNN(Recurrent Neural Network), 그리고 최신 주제인 Attention과 Transformer까지 다양한 주제를 다뤄서 좋았습니다. 강의는 초보자도 쉽게 접근할 수 있도록 설계되었으며, 각 섹션은 이론 설명과 함께 다양한 실습으로 구성되어 있어 학습자가 직접 코드를 작성하며 딥러닝의 원리를 체험할 수 있는 점이 특히 마음에 들었습니다. 특히, 실무에서 바로 적용 가능한 기초 개념부터 시작하여 고급 주제까지 단계별로 학습할 수 있어, 딥러닝 분야에 처음 접근하는 사람뿐만 아니라, 기본 지식을 리마인드하고자 하는 현업 인원들에게도 추천할만 하다고 생각합니다. 각 주제는 충분한 실습과 예제를 통해 깊이 있게 다루어지며, 이를 통해 학습자는 딥러닝의 다양한 측면을 종합적으로 이해하고 실제 문제 해결에 적용할 수 있는 능력을 기를 수 있을 거라고 생각합니다. 강의의 체계적인 구성과 실습 중심의 접근 방식은 학습자가 딥러닝 기술을 실제로 활용하는 데 필요한 실질적인 경험을 제공하는 이 강의를 딥러닝 분야에 관심이 있는 모든 이들에게 강력히 추천합니다.
강의를 수강해주시고 이렇게 또 상세하게 리뷰 적어주셔서 감사합니다 ㅠㅠ 안그래도 폭넓은 주제를 다루되 최대한 깊이 있으면서도 쉽게 풀어서 설명드리고 실습을 통한 실무 감각을 익힐 수 있도록 커리큘럼을 구성하는데 고민을 많이 했습니다. 이렇게 도움이 되셨다니 보람차네요! 감사합니다 :)