인프런 커뮤니티 질문&답변
normalized significant 질문
작성
·
263
0
6분 28초쯤 normalized significant 설명하실 때 1.ㅁㅁㅁㅁ x 2^△라고 하셨는데, 3.14같은 10진수부가 1이 아닌 숫자들은 normalized significant 형태가 어떻게 되는 걸까요?
3.ㅁㅁㅁㅁx 2^△로 이해하면 될까요?
그럼 결국 normaized significant는 소수점을 나타내는 밑이 2인걸 의미한다고 보면 될까요?
답변 1
1
안녕하세요 :)
10진수부가 1이 아닌 경우에도 1.ㅁㅁㅁㅁ x 2^△ 꼴의 수로 변환될 수 있습니다.
질문 주신 3.14의 경우에도 2^1 X 1.5700000524520874 로 변환될 수 있습니다.
아래 링크에서 다양한 숫자들을 변환해보시며 확인해보세요 :)
https://www.h-schmidt.net/FloatConverter/IEEE754.html
그리고, 한 가지 오개념을 방지해드리고자 첨언 드리자면,
3.ㅁㅁㅁㅁx 2^△ 형태로는 변환되지 않습니다.
만일 질문하신 대로 3.ㅁㅁㅁㅁx 2^△ 형태로 변환된다면,
3.ㅁㅁㅁㅁ 부분이 이미 2를 넘었으니,
ㅁ의 숫자가 줄고, 2^△의 △의 수가 올라가겠죠?
사실 이는 질문자님께서 아직 교과과정 수학(지수법칙, 로그)을 공부하지 않으신 학생이시라면
조금 이해가 어려울 수는 있습니다.
컨셉이 난해하다면, 아래 위키피디아 내용처럼 이해하셔도 무방합니다.
https://en.wikipedia.org/wiki/Normalized_number
In base b a normalized number will have the form
where again and the digits, are integers between and .
즉, 지수가 b인 경우, d들은 (d0을 제외하고) 0부터 b-1까지의 수를 가지는 것이지요.
감사합니다 :)





