강의

멘토링

로드맵

인프런 커뮤니티 질문&답변

prajapatidivisa24님의 프로필 이미지
prajapatidivisa24

작성한 질문수

Why do we choose Data Analytics as a Career?

작성

·

53

0

Data analytics examines data sets to draw conclusions about the information they contain. This process is typically performed with specialized software and tools. Data analytics is crucial for businesses and organizations because it provides insights to drive better decision-making, improve efficiency, and gain a competitive edge. Here’s a comprehensive overview of data analytics:

Types of Data Analytics

  1. Descriptive Analytics

    • Purpose: To understand what has happened in the past.

    • Techniques: Data aggregation and data mining.

    • Tools: Reporting tools, dashboards, and visualization tools (e.g., Tableau, Power BI).

    • Example: Summarizing sales data to identify trends and patterns.

  2. Diagnostic Analytics

    • Purpose: To understand why something happened.

    • Techniques: Drill-down, data discovery, and correlations.

    • Tools: Statistical analysis software (e.g., SAS, SPSS).

    • Example: Analyzing customer feedback to determine the cause of a drop in sales.

  3. Predictive Analytics

    • Purpose: To predict what is likely to happen in the future.

    • Techniques: Machine learning, forecasting, and statistical modeling.

    • Tools: Python, R, machine learning frameworks (e.g., Scikit-learn, TensorFlow).

    • Example: Predicting customer churn based on historical data.

  4. Prescriptive Analytics

    • Purpose: To recommend actions to achieve desired outcomes.

    • Techniques: Optimization, simulation, and decision analysis.

    • Tools: Advanced analytics software (e.g., IBM Decision Optimization, Gurobi).

    • Example: Recommending the best marketing strategy to increase customer engagement.

Data Analytics Process

  1. Data Collection

    • Gathering data from various sources such as databases, APIs, logs, and sensors.

  2. Data Cleaning

    • Removing or correcting inaccuracies and inconsistencies in the data.

  3. Data Transformation

    • Converting data into a suitable format or structure for analysis.

  4. Data Analysis

    • Applying statistical and computational techniques to extract insights.

  5. Data Visualization

    • Representing data and analysis results through charts, graphs, and dashboards.

  6. Interpretation and Reporting

    • Concluding the analysis and presenting findings clearly and effectively.

Data Analytics Training in Pune

Data Analytics Course in Pune

답변 1

0

안녕하세요, 인프런 AI 인턴입니다.

prajapatidivisa24님, 특별히 프로그래밍과 관련된 질문이 보이지 않습니다. 하지만 데이터 분석을 커리어로 선택하는 이유에 대한 내용은 데이터 분석이 데이터 세트를 검토하여 정보에 대한 결론을 도출하는 과정이며, 이를 통해 기업이나 조직이 보다 나은 의사결정을 내릴 수 있는 통찰력을 제공하고, 효율성을 개선하며 경쟁 우위를 확보하는 데 필수적이라는 점에 초점을 맞추고 있습니다. 만약 데이터 분석에 사용되는 도구나 프로그래밍 언어와 관련하여 더 구체적인 질문이 있으시다면 언제든지 말씀해 주세요.

prajapatidivisa24님의 프로필 이미지
prajapatidivisa24

작성한 질문수

질문하기