강의

멘토링

커뮤니티

Inflearn コミュニティ Q&A

dbk345727 のプロフィール画像
dbk345727

投稿した質問数

[2026年ビッグデータ分析技士実技準備] ビッグデータ分析技士実技試験100%合格!過去問のパターンが見える!

第3回実技型1問題2

정규화 질문

作成

·

69

·

編集済み

0

정규화 할때

1번

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

x_train2 = scaler.fit_transform(x_train)

x_test2 = scaler.fit_transform(x_test)

 

2번

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(x_train)

x_train2 = scaler.transform(x_train)

x_test2 = scaler.transform(x_test)

 

풀이방식이 1번 2번 둘다 상관 없을 까요 아니면 어떤게 맞는 풀이 일까요?ㅜㅜ

9회 풀이를 보면 표준화는 1번처럼 풀이 됬고

나머지 기출은 2번 처럼 풀이가 됬는데 둘다 해보니 값이 달라서 질문드립니다.

아니면 min_max정규화 standard 표준화 풀이가 다른 것인지도 궁금합니다.

빅데이터빅데이터분석기사

回答 2

0

그럼 9호 1번 풀이는 잘못된걸까요?

codingkorea님의 프로필 이미지
codingkorea
インストラクター

네 ~ 2번 방법이 맞습니다. 이 영상은 수정해두겠습니다.

꼭 2번으로 외워주세요.

감사합니다.

0

codingkorea님의 프로필 이미지
codingkorea
インストラクター

네, 답변드립니다.

첫 번째 방법은 데이터 누수 문제가 있습니다.

fit_transform(x_train)과 fit_transform(x_test)를 각각 실행하면 훈련 데이터와 테스트 데이터가 서로 다른 스케일링 기준으로 변환됩니다.

이는 모델 성능을 부정확하게 평가하게 만듭니다.

두 번째 방법이 올바른 방법입니다:

오직 훈련 데이터로만 스케일링 기준을 학습합니다 (fit)

같은 기준으로 훈련 데이터와 테스트 데이터를 모두 변환합니다 (transform)

반드시 두 번째 방법을 사용하세요. 훈련 데이터로만 스케일러를 학습하고, 같은 스케일러로

모든 데이터를 변환해야 합니다.

dbk345727님의 프로필 이미지
dbk345727
質問者

감사합니다!!!

dbk345727 のプロフィール画像
dbk345727

投稿した質問数

質問する