embedding ๊ณผ์ ์ค Error, message length too large ๋ฐ์
์๋์ ๊ฐ์ด batch๋ก ๋ฐ๋ณต๋ฌธ ๋๋ ค์ add_documents(batch) ์ฒ๋ฆฌํ์ด์. from langchain_pinecone import PineconeVectorStore # ๋ฐ์ดํฐ๋ฅผ ์ฒ์ ์ ์ฅํ ๋ index_name = 'tax-upstage-index' # Split documents into smaller chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) chunked_documents = text_splitter.split_documents(document_list) print(f"Chunked documents length: {len(chunked_documents)}") # Initialize the PineconeVectorStore database = PineconeVectorStore.from_documents( documents=[], # Start with an empty list embedding=embedding, index_name=index_name ) # Upload documents in batches batch_size = 100 for i in range(0, len(chunked_documents), batch_size): print(f'index: {i}, batch size: {batch_size}') batch = chunked_documents[i:i + batch_size] database.add_documents(batch) # Add documents to the existing database