
텐서플로우 2.0으로 배우는 딥러닝 기초
Chris Song
텐서플로우 2.0의 기초 문법을 공부하고, 딥러닝의 이론을 텐서플로우 실습 코드로 익히게 됩니다.
초급
딥러닝, Tensorflow, 머신러닝
This course will help you reduce the amount of trial and error you may experience in machine learning projects. I am in charge of Luid's machine learning pipeline and will teach you from the basics.
Machine Learning Experiment Management
Hyperparameter optimization
Automating the creation of machine learning experiment reports
Data Verification TFDV
Model Analysis
Research Code Quality Control
Kubeflow hands-on
Model repository mlflow practice
Model serving bentoML practice
Andrew Ng, one of the four leading AI experts, recently explained the importance of MLOps at an online conference. He argued that we must move beyond model-centric thinking and focus on MLOps and data. The engineers who can accomplish this are machine learning engineers.
But did you know that writing model code only accounts for 5% of the overall machine learning project effort?
In reality, 95% of the work is spent on building data pipelines, preprocessing data, and serving models.
This is what it means to be a machine learning engineer!
Machine learning engineers build machine learning pipelines, automate the work of machine learning projects, and dramatically increase the productivity of research organizations.
There are plenty of machine learning courses available, but few offer practical, hands-on AI production courses.
So, after taking the lecture, you can become an engineer who can solve the problems given in the project.
We have created a lecture that selects only the content that is absolutely necessary for practical use.
Through this course, you will acquire the machine learning engineering skills necessary for practical work.
I hope you can complete your project successfully.
Current) Riiid VP of AIOps
Current) Google Developer Expert for ML
Former Naver AI Research Engineer
Former Kakao Data Engineer
Q. Will machine learning pipelines help my career?
A. I can say with certainty. It's the most important technology in the AI industry right now. I've consulted with countless companies, and I've found that most of them have a thirst for this very machine learning pipeline. If you visit the technology introduction pages of AI companies, you'll always find MLOps-related technologies. They explain how to efficiently collect and train data.
Q. Can I listen even if I don't know much about development?
A. The recommended course is for those with some development knowledge, but it is structured so that you can basically follow along without thinking.
Q. What level of coverage do you cover?
A. We will cover the basic concepts of machine learning pipelines and the code quality management, experiment management, model management, and serving API construction required in practice.
Who is this course right for?
People who want to apply machine learning in practice
Anyone who wants to reduce technical debt in their machine learning projects
Need to know before starting?
Python
Machine Learning/Deep Learning Basics
1,040
Learners
90
Reviews
8
Answers
4.4
Rating
3
Courses
(현) 뤼이드 VP of AIOps
(현) Google Developer Expert for Machine Learning
(전) Naver - AI Research Engineer
(전) Kakao - Data Engineer
All
16 lectures ∙ (10hr 15min)
All
83 reviews
4.5
83 reviews
Reviews 9
∙
Average Rating 4.4
4
좋은점 1. 꽤 깊고 현실적인 주제에 대해서 빠른 시간 내로 실무적인 접근법을 배울 수 있다. 2. wandb, wit 등의 유용한 툴과 docker, kubernetes, kubeflow, mlflow, bentoML 등의 implementation 과정을 볼 수 있다. 3. 실전/실무적인 접근 혹은 노하우 등을 얻을 수 있다. 안좋은점 1. '인프런 강의'만을 위한 강의가 아니라, 다른 talk? 혹은 강의? 에서 진행했던 것을 레코딩해서 그대로 올린것 같음 => 산만한 부분이 많고, 강의 녹화 품질도 같은 가격대비 다른 강의에 비해서 조금 아쉬움. 인프런에서 꽤 많은 강의를 구매하고 청취했고, 그 외 다른 플랫폼에서도 강의를 시청했는데 단순 강의 품질만 따지자면 좋은 평가를 받기는 어려울것 같음. 2. 1에 이어서, 정제되지 않은 설명/개인 의견/강의자료가 아쉬움. '인프런'만을 위해서 촬영하지 않았기 때문에 발생할 수 있는 일 같음. (인프런에서 강의 컨텐츠 사전 감수는 전혀 하지 않는가 봅니다.) 3. 수강평을 남겨야 강의 자료를 받을 수 있기 때문에 동영상을 보면서 동시에 따라 하기에는 무리가 있음. 물론, 완강하기 전에 수강평을 먼저 쓰면 모르겠지만, 개인적으로 쓸모없는 리뷰를 남기고 싶지 않아서 완강 후에 리뷰를 남기고 반복 청취 할 때 강의 자료와 함께 볼 예정임. 총평 강의 대상이 '중급 이상' 이라고 공지 한것 처럼, 어느정도 경험이 있거나 들어본 경험이라도 없으면 추천 하지 않음. 하지만 경험이 있는 상태에서 빠르게 훑고, 또 실무자 관점의 접근 등을 볼 수 있는 좋은 기회임. 그리고, 머신러닝/딥러닝 모델 연구 열심히 하고 MLOps 능력도 탑재하고 싶은 사람이라면 한 번쯤 들어도 나쁘진 않음. 본 강의를 듣고 최근 코세라에 오픈한 MLOps 강의도 완강 한다면 괜찮은 조합이 될것 같네요.
Reviews 2
∙
Average Rating 4.5
Reviews 3
∙
Average Rating 4.7
Reviews 2
∙
Average Rating 3.0
Reviews 1
∙
Average Rating 4.0
Limited time deal ends in 03:17:07
$66,000.00
25%
$68.20
Check out other courses by the instructor!
Explore other courses in the same field!