메일 인증하면, 매일 특별한 선물💌
Thumbnail
인프런 추석할인 중(D-5)
BEST 데이터 사이언스 데이터 분석
공공데이터로 파이썬 데이터 분석 시작하기
(4.9)
187개의 수강평 ∙ 4128명의 수강생

20%

52,800원

66,000원
지식공유자 : 박조은
총 83개 수업˙총 13시간 51분
평생 무제한 수강
수료증 발급 강의
입문 초급 대상 중급이상
이 강의는 멘토링 신청이 가능합니다.
멘토링은 수강 신청과 별개로 운영되며, 수강생이 아니어도 신청할 수 있습니다.
폴더에 추가 2703 공유
초급자를 위해 준비한
[데이터 분석, 데이터 사이언스] 강의입니다.

이디야는 스타벅스 근처에 입점한다는 설이 있었습니다. 과연 이디야와 스타벅스의 매장입지는 얼마나 차이가 날까요? 2013년부터 2019년까지 부동산 가격 변동 추세가 아파트 분양가에도 반영될까요? 우리 동네에는 어떤 공원이 있을까요? 공공데이터 포털에 있는 데이터를 어떻게 활용하면 좋을까요? 공공데이터를 통해 여러 형태의 데이터를 다뤄보며 Python과 여러 데이터분석 라이브러리에 익숙해 지는 것을 목표로 합니다.



1년 동안 강의를 운영하며 받은 소중한 피드백을 모아
2020년, <공공데이터로 파이썬 데이터 분석 시작하기>가 완전히 새롭게 바뀌었습니다!

✍🏻 코드와 영상을 모두 새로 작성하였습니다.

• 기존보다 훨씬 다양한 그래프를 다루며(히트맵, 히스토그램, 분포도, 산점도, 회귀 그래프 등) 서브플롯을 쉽게 그려볼 수 있는 내용이 추가되었습니다.

📝 실습 코드와 결과코드를 함께 제공합니다. 

• 영상을 보며 코드를 따라해 보실 수 있도록 간단한 가이드가 제시된 실습파일(01-apt-price-input.ipynb) 과 결과가 함께 표시된 (01-apt-price-output.ipynb) 파일을 활용해 보세요.


관련 로드맵

뼈문과를 위한 파이썬(Python) 현실 데이터 분석 
실제 업무에 활용 가능한 데이터 사이언스 로드맵!
  이 강의 포함 
지식공유자가 알려주는
강의 수강 꿀팁!
📚
선수 지식,
필요한가요?
파이썬 기초 문법

커리큘럼 총 83 개 ˙ 13시간 51분의 수업
이 강의는 영상, 수업 노트, 첨부 파일이 제공됩니다. 미리보기를 통해 콘텐츠를 확인해보세요.
섹션 0. 데이터 분석 준비하기
아나콘다 주피터 노트북 사용법 알아보기 18:37
(선택) Jupyter nbextensions 로 목차 기능 사용하기
섹션 1. Chapter1. 전국 신규 민간 아파트 분양가 분석
소스코드와 데이터 다운로드 위치
[1/20] 공공데이터 포털의 신규민간아파트 분양가 데이터셋 소개와 다운로드 미리보기 05:12
[2/20] 전혀 다른 두 개의 데이터셋 미리보기 01:57
[3/20] 데이터로드하고 미리보기, 행과 열의 수를 알아보기 11:47
[4/20] 데이터전처리 - 결측치 보기와 분양가격 데이터 타입을 수치형태로 변경하기 12:08
[5/20] 문자 vs 수치 형태의 데이터를 describe 로 기술통계값을 봤을 때 차이를 이해하기 06:01
[6/20] 규모구분 컬럼을 전용면적으로 변경하고 사용하지 않는 컬럼 제거로 메모리 용량 줄이기 미리보기 11:33
[7/20] groupby 로 데이터를 그룹화 해서 연산하기 08:24
[8/20] pivot_table 로 데이터 연산하고 groupby 와의 차이를 이해하기 11:12
[9/20] 그룹화한 데이터 판다스의 시각화 기능을 사용해서 다양한 형태로 표현하기 07:41
[10/20] 상자수염그림(boxplot) 의 5가지 수치 이해하기와 분양가 시각화 08:43
[11/20] seaborn 으로 시각화 하기 - lineplot, relplot 으로 선그래프와 서브플롯 그리기 19:02
[12/20] seaborn 으로 box, violinplot 그리기 10:14
[13/20] scatterplot, regplot, lmplot, swarmplot 의 차이를 분양가 데이터 시각화로 이해하기 12:45
[14/20] distplot, ridgeplot, pairplot 으로 시각화와 서브플롯 그리기 18:38
[15/20] tidy data 를 이해하고 pandas 의 melt 로 두 개의 데이터셋을 같은 형태로 만들기 미리보기 08:21
[16/20] 연도와 월을 함수와 pandas 의 apply 를 통해 분리해서 새로운 컬럼으로 만들기 09:15
[17/20] pandas 의 concat 으로 두 개의 데이터프레임 하나로 합치기 07:21
[18/20] pivot_table 로 연산한 결과를 수치의 많고 적음에 따라 heatmap 으로 표현하기 12:09
[19/20] 2013년부터 최근 데이터까지 병합된 데이터를 합쳐서 시각화 하기 15:26
[20/20] 지역별 분양가를 시각화 하고 정리하기 07:51
섹션 2. Chapter2. 상가(상권)정보로 기술통계 익히기
소스코드와 데이터 다운로드 위치
[1/15] 상가(상권)정보 데이터셋 소개와 필요한 라이브러리 로드하기 06:46
[2/15] 데이터 로드하고 결측치 보기 13:38
[3/15] missingno 라이브러리로 결측치 시각화 하기 13:42
[4/15] .loc와 .iloc 로 행열 값 가져오기와 차이점 이해하기 10:35
[5/15] 단변량 수치형 데이터 기술통계 값 보기 - describe 11:45
[6/15] 단변량 수치형 변수 시각화 - distplot 사용하기 07:03
[7/15] 이변량 수치형 데이터 분석하기 - 상관계수를 구해보고 회귀선 그려보기 미리보기 08:07
[8/15] 단변량 범주형 변수 분석하기 - describe 와 value_counts 04:51
[9/15] 구별 음식점 분석으로 서브셋 만들기 - boolean Indexing 이해하기 미리보기 21:24
[10/15] 구별 학원종류 비교하기 서브셋 만들기 11:30
[11/15] 대치동과 목동에는 입시학원이 많을까? 14:19
[12/15] groupby 연산과 시각화 - unstack 활용하기 10:25
[13/15] 범주형 데이터의 서브플롯 쉽게 그리기 - catplot 11:06
[14/15] scatterplot 으로 위도와 경도 데이터 다양하게 다루기 06:45
[15/15] folium 으로 지도에 자세히 표현해 보기 15:00
섹션 3. Chapter3. 프랜차이즈 입점 분석
소스코드와 데이터 다운로드 위치
[1/10] 프랜차이즈 분석을 위한 라이브러리 로드와 기본설정 하기 07:07
[2/10] 데이터 로드하고 필요한 데이터만 서브셋으로 만들고 csv 파일로 저장하기 11:56
[3/10] 텍스트 데이터 다루기 - 베스킨라빈스와 던킨도너츠 데이터만 가져오기 14:32
[4/10] countplot, scatterplot, jointplot 으로 시각화 해보기 09:40
[5/10] folium Marker로 베스킨라빈스와 던킨도너츠 매장 지도에 표시하기 16:19
[6/10] folium 으로 MarkerCluster 맵 그리기 05:16
[7/10] 파리바게뜨와 뚜레쥬르 분석을 위한 텍스트 데이터 다루기 미리보기 11:01
[8/10] 파리바게뜨와 뚜레쥬르 데이터 시각화 해보기 05:18
[9/10] folium의 CircleMarker로 매장위치 표현하고 타일로 스타일 바꾸기 09:25
[10/10] MarkerCluster, Heatmap 으로 위치별 매장의 밀집도 표현하기 11:09
섹션 4. Chapter4. 스타벅스, 이디야 매장위치 비교하기
소스코드와 데이터 다운로드 위치
[1/9] 이디야 매장은 스타벅스 근처에 위치할까? 06:41
[2/9] 스타벅스, 이디야 텍스트 데이터 전처리와 브랜드명 만들기 13:20
[3/9] seaborn 으로 데이터 시각화 하기 - jointplot 으로 kde plot 그리기 08:50
[4/9] gropby 와 pivot_table로 구별 브랜드별 점포수 비교하기 09:58
[5/9] groupby와 pivot_table 반환값으로 시각화 차이 이해하기 13:05
[6/9] folium 으로 Marker, CircleMarker 로 그려보기 미리보기 12:59
[7/9] Geo JSON 값 이해하고 choropleth 그려보기 15:19
[8/9] 구별 위경도의 평균을 pivot_table로 구하고 merge 로 합치기 16:11
[9/9] CircleMarker의 크기를 매장수를 반영해서 그리기 17:16
섹션 5. Chapter5. 전국 도시공원 데이터로 다양한 전처리 해보기
소스코드와 데이터 다운로드 위치
[1/21] 전국 도시공원 데이터 분석 소개 07:32
[2/21] seaborn 의 sns.set()으로 폰트, 스타일 설정 하기 10:15
[3/21] 코드 한 줄로 기술통계에서 리포트 생성까지 - Pandas Profiling 19:37
[4/21] 결측치 시각화 - missingno의 matrix를 seaborn으로 그려보기 10:57
[5/21] 결측치 다루기 - 도로명 주소의 결측치를 지번주소로 대체하기 07:04
[6/21] 주소를 통한 시도명과 구군명 파생변수 만들기 06:50
[7/21] 위도와 경도를 통한 수치 데이터의 이상치와 오류값 찾기 06:14
[8/21] 날짜를 통한 데이터 타입 변경과 파생변수 만들기 13:19
[9/21] 텍스트 데이터 전처리를 위한 정규표현식 08:38
[10/21] 다른 형태로 입력된 텍스트를 정규표현식으로 전처리 하고 빈도수 세기 17:34
[11/21] 워드클라우드로 운동시설 빈도수 시각화하기 10:57
[12/21] 정규표현식으로 텍스트 전처리 함수 만들기 16:46
[13/21] 키워드 추출을 통한 텍스트 빈도수 세기 07:11
[14/21] 정보 마스킹 - 전화번호의 일부 마스크처리 하기 16:14
[15/21] 이메일, 자동차 등록번호 정규표현식으로 마스킹 하기 10:03
[16/21] 수치형 vs 범주형 변수의 요약과 crosstab을 통한 범주형 데이터 연산 14:05
[17/21] 시도별 공원 빈도수와 비율 구하기 04:29
[18/21] scatterplot으로 전국 도시공원 시각화 하기 06:31
[19/21] 리스트 추가, 제거와 pairplot 으로 서브플롯 쉽게 그리기 07:42
[20/21] 피봇테이블로 시도별 공원 수와 면적 연산하기 03:19
[21/21] 내 주변의 공원을 찾고 지도에 표현해 보기 11:35
강의 게시일 : 2019년 02월 12일 (마지막 업데이트일 : 2020년 04월 08일)
수강평 총 187개
수강생분들이 직접 작성하신 수강평입니다. 수강평을 작성 시 300잎이 적립됩니다.
4.9
187개의 수강평
5점
4점
3점
2점
1점
VIEW 좋아요 순 최신 순 높은 평점 순 낮은 평점 순 평점 순 높은 평점 순 낮은 평점 순
hsw400 thumbnail
미국에서 공부중에 있습니다. 학교에서 유명한 교수님 강의보다 유익합니다.
2020-09-29
세바스찬 주니어 3세 thumbnail
안녕하세요? 세바스찬 주니어 3세입니다. 이전부터 여러 강의들을 찾아보았는데 파이썬 전처리 및 시각화를 익히는 부분에 있어서는 박조은 선생님 강의가 최고인 것 같습니다. 좋은 강의 만들어주셔서 진심으로 감사드립니다! 개인적인 바람은 캐글 실습을 실무에 사용해볼 수 있는 주제별로 묶어서 강의를 만들어주셨으면 좋겠어요..!ㅎㅎㅎ 다시 한 번 감사합니다!
2020-11-06
Jang Daehyuk thumbnail
데이터 분석(로드,전처리, EDA,시각화) 면에서 최고의 강의라고 생각합니다. 파이썬 데이터 분석용 메서드를 공부하면서 예제를 코딩하다보면 이걸 가지고 내가 무엇을 할수 있을까? 라고 생각을 하게 됩니다. 이 강의는 그거에 대한 답과 실마리를 제시해준다고 생각합니다.또, 부분부분 쓰이는 메서드들도 굉장히 유용한게 많습니다. 덧붙여서 최근 데이터와 설명을 보충해서 리뉴얼해주는 점도 굉장히 좋았습니다. 결론: pandas, seaborn, matplotlib + @ 를 원한다면 그냥 들으세요. 초보자라면 절대 후회안할 겁니다.
2020-04-05
지식공유자박조은
정성 가득한 수강평 감사합니다! 덕분에 챕터5까지 모든 강좌에 대해 업데이트 하는데 큰 힘이 되었습니다. 특히 챕터5에서는 기존 정형 데이터 위주의 분석에서 텍스트 데이터를 통한 빈도수 추출 등의 분석과 시각화 그리고 개인정보보호를 위한 정보마스킹을 이메일, 전화번호, 자동차 등록번호를 통해 정규표현식으로 구현해 보는 내용이 추가되었습니다. 앞으로도 피드백을 통해 꾸준히 콘텐츠를 업데이트 할 예정입니다 :)
2020-04-08
휴식중인 가오리 thumbnail
적지 않은 나이에 새롭게 도전하고 있는 수강생입니다. 예전 회사에 있을 때 비슷한 데이터 분석을 했었는데, 이렇게 편하게 좋은 툴들이 있었다면 회사에서 생산성을 엄청 높일 수 있었을텐데.. 하는 생각을 하게 됩니다. 강사님 강의를 통해 데이터 분석을 파이썬 노트북을 통해 쉽고 폭넓고 깊게 할 수있다는걸 알 수 있었습니다. 데이터는 접근함에 있어서 새로운 시각을 알게 해 주셔서 너무 감사드립니다. 강의가 너무 알기 쉽고 알차서 다른 분들께도 꼭 추천드리고 싶네요.
2020-04-10
김차수 thumbnail
안녕하세요 이 강의는 저에게 파이썬에 대략적인 와꾸? 를 알게 해준 정말 좋은 강의 입니다. 이강의로 100프로 커버되지는 않겠지만 이 강의를 통해서 제가 검색해보고 찾아볼 수 있게 끔 기본을 가르쳐준 강의 입니다 정말 감사해요 최고 입니다
2020-08-08
인프런 추석할인 중(D-5)

20%

52,800원

66,000원
폴더에 추가 2703 공유
지식공유자 : 박조은
총 83개 수업˙총 13시간 51분
평생 무제한 수강
수료증 발급 강의
입문 초급 대상 중급이상
이 강의는 멘토링 신청이 가능합니다.
멘토링은 수강 신청과 별개로 운영되며, 수강생이 아니어도 신청할 수 있습니다.
수강 전 궁금한 점이 있나요?
문의하기
문의
지식공유자 되기
많은 사람들에게 배움의 기회를 주고,
경제적 보상을 받아보세요.
지식공유참여
기업 교육을 위한 인프런
“인프런 비즈니스” 를 통해 모든 팀원이 인프런의 강의를
자유롭게 학습하는 환경을 제공하세요.
인프런 비즈니스